
The system is configured using Apache configuration files, plus some ECMA script files that can be
located anywhere you want.

In general, Soffid WSSO acts intercepting and modifying any request made to Apache. This request
can be processed by Apache itself or forwarded to another web or application server using
ProxyPass module.

Syntax:

When the user agent performs a POST request to a path that matches the specified regular
expression, Soffid WSSO will intercept it. Mind the path is missing any host, protocol or port
qualifier.

If the requested file matches the regular expression, and the user agent is using the POST method,
Soffid WSSO will modify the posted content. Optionally you can specify a regular expression that
must match the original content of the sent message.

The first step performed by Soffid WSSO is to parse the posted data to get the user account sent.
The user account sent will be the one whose name matches the account parameter of the
SoffidPostData directive. If SoffidPostData directive lacks “account=...” the default (j_user)
parameter name will be used.

The next step is to retrieve the password that belongs to the specified account on the system set
at SoffidPostData directive.

WSSO configuration

Configuring Soffid WSSO

SoffidPostData directive

SoffidPostData [path-regex] [system=...] [account=...] [password=....] [contains=....] [flags]

SoffidPostData [path-regex] [system=...] [account=] [post= "DataToBePosted"] [replace | append | prepend |
merge] [contains=...] [flags]

The final step is to add or change the password sent. The name of the password parameter should
be set by the SoffidPostData directive. If none is specified, the default (j_password) parameter
name will be used.

For more sophisticated applications, the full content of the post data can be specified the syntax
post="DataToBePosted.". On this data to be posted, the administrator can specify some
expressions that will be replaced by the proper value:

${secret.xxx} where xxx names for a secret stored at the user secrets vault.
${account} will be resplaced by the used account.
${password} will be replace by the account password.

The data sent by the browser will be combined with the new posted data in four different ways:

replace: the data sent by the browser is completely ignored.
append: the new data will be appended to the original one.
prepend: the new data will precede the original one.
merge: each parameter of the original request will keep its position despite its value is to
be changed. New parameters will be appended after the original ones.

Additionally, the following flags are allowed:

force: By default, the password will be injected only when no password is sent, or it's
empty. If you'd like to overwrite the password sent by the user agent, this flag must be
specified.
requiresAccount: If specified, Soffid WSSO will not try to guess the account to use if it is
not send by the user agent.

Example:

Syntax:

This Appache directive allows WSSO to inject user name & password on web applications using
HTTP BASIC authentication scheme. If the path being accessed matches the regular expression,
Soffid WSSO will inject the “Authorization: Basic” header as stated at RFC 2617.

SoffidPostData .* /j_security_check system=soffid account=j_user
"j_user=${account}&j_password=${password}"

SoffidPostData .* /j_security_check system=soffid account=j_user password=j_password

SoffidBasicAuthorization directive

SoffidBasicAuthorization [path-regex] system

The system must match a managed system, also named Agent, listed at Soffid IAM Console.

Example:

Syntax:

To improve the user experience it's necessary to hide the underlying application-specific user
authentication form. In order to do this, the web pages generated by the applications can be
modified in order to skip unnecessary forms or to request a global login authentication.

ProxyOnLoadScript directive triggers the execution of an ECMA script that is able to modify the
page generated by the application server. As long as the script execution is a rather heavy task,
WSSO must accurately detect which pages must trigger the script execution. Currently, the script
execution can be triggered by contents and by page path.

Allowed parameters:

path-regex Regular expression that will be matched against the page
path, excluding any trailing parameter, sent after a
question mark.

content-regex Regular expression that will be matched against the page
contents.

maxSize Maximum page size that will be handled. Whether the
page size exceeds this limit, it will be sent to the user
agent.

scriptFile File containing the script to be executed. Note the script
must be UTF-8 encoded.

Regards this directive could potentially manage any kind of media generated by a web server, it is
designed to managed XML or HTML files. Anyway, image resources will never trigger the script
execution.

Syntax:

ProxyBasicAuthorization ^/secure/.*$ "soffid"

SoffidOnLoadScript directive

SoffidOnLoadScript [path-regex] content-regex maxSize scriptFile

SoffidCookieName directive

SoffidCookieName cookie-name

Sets the name of the cookie used by Soffid WSSO to track the single sign on session

Syntax:

Sets the domain of the cookie used by Soffid WSSO to track the single sign on session. By default,
the cookie is attached to the virtual server name

Syntax:

By default the WSSO engine will hide actual cookies to the browser, and only the Soffid cookie will
be sent. In order to share the cookie names and values with the browser, one can add a regular
expression to match the cookies to unhide.

To unhide all cookies, use:

SoffidCookieName directive

SoffidCookieDomain domain-name

SoffidCookiePassthrough directive

SoffidCookieDomain domain-name

SoffidCookiePassthrough .*

Revision #3
Created 7 June 2022 14:18:40 by pgarcia@soffid.com
Updated 17 October 2024 09:27:05 by pgarcia@soffid.com

