
It is possible to define the underlying data model without having to write java code. To do this, you
must use an XML descriptor which describes the DataNodes and their relationships. An skeleton
XML descriptor has the following structure:

Within the XML tag whose root is always zk-ib, you can specify one or more DataNodes. Each
DataNode has a unique name. Within each DataNode, you can define multiple finders. Each finder
specifies a name and a type. The name will be used to build xpaths, whlie the type identifies the
type of DataNode this xpaths refers to.

Within each finder you can define multiple search handlers. They will be responsible for retrieving
data from persistent storage, just like the find method on the finder interface. Additionally, you can
define one or new instance handlers. They will be responsible for creating new business objects on
user request.

Finally, each DataNode can have many persistence handlers. They will act just lik the doInsert,
doUpdate and doDelete methods on DataNode class. Each type of handler can be executed

Introduction

<?xml version="1.0" encoding="UTF-8"?>

<zkib-model>

 <datanode name="my-data">

 <finder name="title" type="title">

 </finder>

 <finder name="country" type="country">

 ...

 </finder>

 </datanode>

 <datanode name="title"/>

 <datanode name="country">

 <finder name="city" type="city">

 ...

 </finder>

 </datanode>

 <datanode name="city">

 ...

 </datanode>

</zkib-model>

conditionally, depending on expressions to be evaluated at run time. These expressions can use
the following predefined variables:

Additionally, EL expressions may refer to all variables defined within the DataSource. Those
variables are accessed via JXPathContext.getVariables() method. To use of this type of data
models, simply create a datamodel component on the ZUL page and assign the src attribute the
path to the XML descriptor. The path can be a web component or a class path resource.

Variable Value

self Current DataNode

instance Business object wrapped into current DataNode

parent Parent DataNode

parent.instance Business object wrapped into parent DataNode

datasource DataSoruce the current DataNode belongs to

Revision #2
Created 1 June 2021 10:39:18 by pgarcia@soffid.com
Updated 1 June 2021 10:40:23 by pgarcia@soffid.com

