Definition of
dynamic models
using XML
descriptors

Definition of dynamic models using XML descriptors

e Introduction

e Ejb-handler Handler

e Script-handler Handler

e Collection-handler Handler

e Custom-handler Handler

e Data validation

e EJB find handler: ejb-finder

e script-finder handler

e collection-finder handler

e custom-finder handler

e new-instance-script handler

e new-instance-bean handler

e custom-attribute handler

e Using dynamic models

Introduction

It is possible to define the underlying data model without having to write java code. To do this, you
must use an XML descriptor which describes the DataNodes and their relationships. An skeleton
XML descriptor has the following structure:

<?xml version="1.0" encoding="UTF-8"?>
<zkib-model>
<datanode name="my-data">
<finder name="title" type="title">
</finder>

<finder name="country" type="country">

</finder>
</datanode>
<datanode name="title"/>
<datanode name="country">

<finder name="city" type="city">

</finder>

</datanode>
<datanode name="city">

</datanode>

</zkib-model>

Within the XML tag whose root is always zk-ib, you can specify one or more DataNodes. Each
DataNode has a unique name. Within each DataNode, you can define multiple finders. Each finder
specifies a name and a type. The name will be used to build xpaths, whlie the type identifies the
type of DataNode this xpaths refers to.

Within each finder you can define multiple search handlers. They will be responsible for retrieving
data from persistent storage, just like the find method on the finder interface. Additionally, you can
define one or new instance handlers. They will be responsible for creating new business objects on
user request.

Finally, each DataNode can have many persistence handlers. They will act just lik the dolnsert,
doUpdate and doDelete methods on DataNode class. Each type of handler can be executed

conditionally, depending on expressions to be evaluated at run time. These expressions can use

the following predefined variables:

Additionally, EL expressions may refer to all variables defined within the DataSource. Those
variables are accessed via JXPathContext.getVariables() method. To use of this type of data
models, simply create a datamodel component on the ZUL page and assign the src attribute the
path to the XML descriptor. The path can be a web component or a class path resource.

self

instance
parent
parent.instance

datasource

Variable

Value
Current DataNode
Business object wrapped into current DataNode
Parent DataNode
Business object wrapped into parent DataNode

DataSoruce the current DataNode belongs to

Ejb-handler Handler

It is responsible for persisting the object via a stateless session bean. The following attributes are

supported:
Attribute Usage
jndi JNDI path to EJB Home interface
if EL expression that must be evaluated to true prior to
handler action
unless EL expression that must be evaluated to false prior to

handler action

Inside the handler, you should specify the suitable insert-method, delete-method and update-
method tags. There is a mandatory attribute named method. This attribute must contain the name
of the method to invoke. Additionally, the parameters to use can be specified. The following
example shows an ejb-handler that uses an EJB whose only parameter is the data object:

<datanode name="network">
<ejb-handler jndi="com.soffid.sample/NetworksBean">
<insert-method method="insert"/>
<delete-method method="delete"/>
<update-method method="update"/>

</ejb-handler>

</datanode>

This second example shows how to call a method with slightly complex parameters:

<datanode name="acl">
<ejb-handler jndi="com.soffid.sample/NetworksBean" >
<insert-method method="grant">
<parameter value="${parent.instance}"/>
<parameter value="${instance}"/>
</insert-method>
<delete-method methos="revoke">
<parameter value="${instance}"/>
</delete-method>

</ejb-handler>

</datanode>

Script-handler Handler

It ca be used to persist the business objects using BSH scripts. Supports the following attributes:

Attribute Usage

if EL expression that must be evaluated to true prior to
handler action

unless EL expression that must be evaluated to false prior to
handler action

Inside the handler, you can use the insert-script, delete-script and update-script tags. Each
contains the BSH script that the engine will execute to perform inserts, deletes or updates. Within
the BSH script you can refer to the same EL expressions predefined variables:

Variable Value
self Current DataNode
instance Business object wrapped into current DataNode
parent Parent DataNode
parent.instance Business object wrapped into parent DataNode
datasource DataSoruce the current DataNode belongs to

The following example shows how to save objects in file Country:

<datanode name="country">
<script-handler >

<insert-script>
import java.io.*;
f = new FileOutputStream ("country."+instance.abbreviation);
00s = new ObjectOutputStream (f);
oos.writeObject (instance);
oos.close ();
f.close ();

</insert-script>

<update-script>
import java.io.*;
f = new FileOutputStream ("country."+instance.abbreviation);

00s = new ObjectOutputStream (f);

oos.writeObject (instance);
oos.close ();
f.close ();
</update-script>
<insert-script>
import java.io.*;
f = new File ("country."+instance.abbreviation);
f.delete ();
</insert-script>

</script-handler>

</datanode>

Collection-handler Handler

This handler is applicable when the persistence of this object is managed by the parent dataNode.

The allowed attributes are:

Attribute

collection

unless

Usage

EL expression that identifies the collection onto which the
business object must be added or removed

EL expression that must be evaluated to true prior to
handler action

EL expression that must be evaluated to false prior to
handler action

The following example shows how you could manage objects City as a collection of objects within
the object Country, which in turn is saved on a disk arhivo:

<datanode name="city">

<collection-handler collection="${parent.instance.cities}">

</datanode>

Custom-handler Handler

The custom-handler provides coverage for situations where you need a more sophisticated handler
and it is not worth to use a bsh script., In this case the persistence must be done be a java class
that implements the PersistenceHandler interface, and the custom-handler specifying the name of
the class used. The attributes are:

Attribute Usage
className Name of the java class to be used
if EL expression that must be evaluated to true prior to

handler action

unless EL expression that must be evaluated to false prior to
handler action

Data validation

The validation tag is responsible for performing basic checks regarding mandatory attributes and
valid attribute values before being submitted to the persistence handler. The validation tag may
contain one or more attribute-validation and script-validation tags. The verification will be
performed before running the insert or update handler.

attribute-validator contains the following attributes:

Attribute Usage
expr EL expression pointing to the attribute to validate
friendlyName Text to be presented to the user on validation failure. If

there is a ZK label with this text, it will be localized based
on current user language preference.

notNull true is the attribute is mandatory
maxLength Maximum length of the attribute
minValue Minimum value in case of numeric attributes
maxValue Maximum value in case of numeric attributes

attribute-script contains a script that will be executed to validate the business object.

Example:

<datanode name="country">
<validation>
<attribute-validation expr="${instance.abbrevisation}”
notNull="true” friendlyName="Two letter abbrv.”>
<script-validation>
if (instance.abbreviaton.equals(“CT"))
{
throw new RuntimeException (“Catalonia is not a country yet”);

}
</script-validation>

</validation>

</datanode>

EJB find handler: ejb-finder

Handles the method to retrieve business objects via a stateless session bean. Supports the
following attributes:

Attribute Usage
jndi JNDI path to EJB Home interface
method EJB Bean method to get business objects
if EL expression that must be evaluated to true prior to
handler action
unless

EL expression that must be evaluated to false prior to
handler action

Additionally, it can specify one or more parameters in a way similar to the ejb-handler methods

ejb-finder example
<datanode name="country">

<finder name="cities" type="city" >
<ejb-finder jndi="com.soffid.sample/CitiesBean" method="findByCountry">
<parameter value="${instance.abbreviation}"/>
</ejb-finder>

</finder>

</datanode>

script-finder handler

It is responsible for retrieve business objects from the persistence layer using BSH scripts. The
following attributes are supported

Attribute Usage

if EL expression that must be evaluated to true prior to
handler action

unless EL expression that must be evaluated to false prior to
handler action

The contained bsh script must return a collection of business objects. If the returned object is not a
collection object, the engine will treat the returned object as a singleton.

In the following example, the script finder retrives all countries saved to disk in the previous
example:

<datanode name="root">

<finder name="country" type="country" >
<script-finder >
import java.io.*;
files[]1 = new File(".").listFiles (new FilenamekFilter () {
public boolean accept (File dir, String name) {

return name.startsWith("coutnry.");

);

v = new java.util.Vector();

for (inti = 0; i < files.length; i++)

{
f = new FilelnputStream (files[i]);
ois = new ObjectinputStream (f);
v.add (ois.readObject ();
ois.close ();
f.close();

}

return v;

</script-finder>

</finder>

</datanode>

collection-finder handler

Similar to collection-handler, this handler retrieves the list objects contained on a parent collection.

Attribute Usage
collection EL expression that contains the objects collection
if EL expression that must be evaluated to true prior to

handler action

unless EL expression that must be evaluated to false prior to
handler action

The following example shows how you could retrieve City objects as a collection of objects within
the County object:

<datanode name="country">
<finder name="cities" type="city" >
<collection-finder collection="¢${instance.cities}">

</finder>

</datanode>

custom-finder handler

The custom-finder provides coverage for situations where you need a more sophisticated handler
and is not worth implement it using a script. In this case a class that implements the FinderHandler
interface must be developed, and the custom-finder specifying the name of the class must be used

Attribute Usage
className Name of the FinderHandler class
if EL expression that must be evaluated to true prior to

handler action

unless EL expression that must be evaluated to false prior to
handler action

new-instance-script handler

It is responsible for instantiating new objectswithin a finder on user request .

Attribute Usage

if EL expression that must be evaluated to true prior to
handler action

unless EL expression that must be evaluated to false prior to
handler action

With the following example the model will alow to create a new city within a country:
<datanode name="country">

<finder name="cities" type="city" >
<collection-finder collection="¢${instance.cities}">
<new-instance-script>
¢ = new City();
c.countryAbbreviation = instance.abbreviation;
return c;
</new-instance-script>

</finder>

</datanode>

new-instance-bean handler

This handler allows the craetion of a new business object and assign default attribute values. The
value of the bean attributes is specified using multiple instances of the bean-attribute tag

Attribute Usage
className Name of the business object class
if EL expression that must be evaluated to true prior to

handler action

unless EL expression that must be evaluated to false prior to
handler action

bean-attribute/name Name of the attribute

bean-attribute/value EL expression with the value to assign

With the following example would create a new city within a country:

<datanode name="country">

<finder name="cities" type="city" >
<collection-finder collection="${instance.cities}">
<new-instance-bean className="City">
<bean-attribute name="countryAbbreviation" value="${instance.abbreviation}"/>
</new-instance-bean>

</finder>

</datanode>

custom-attribute handler

Generates virtual attributes derived from other attributes or external elements of the application. It
can be applied to any DataNode to add attributes that were not originally present at the underlying
business object. Those attributes will be presented at the JXPath interface just as if they were
business objects attributes

Attribute Usage
name Name of the virtual attribute
expr EL expression that evaluates de attribute value
if EL expression that must be evaluated to true prior to

handler action

unless EL expression that must be evaluated to false prior to
handler action

depends XPath to a attribute or business object the expression
depends on

It's important to properly set the depends attribute as long as the attribute will be reevaluated
whenever a dependent attribute has been changed.

The custom attribute can have an empty EL expressions and use a BeanShell script instead. Here is
an example of both aproaches:

<datanode name="network">
<custom-attribute name="networkMaskl” expr="${instance.network}/${instance.mask}”>
<custom-attribute name="networkMask2">
<depends>@network</depends>
<depends>@mask</depends>
return instance.network + “/” + instance.mask;

</custom-attribute>

</datanode>

Using dynamic models

To use dynamic models XmIDataSource tag must be replaced by datamodel. The datamodel tag
has the following attributes:

Attribute Usage
id ZK ldentifier
className root DataNode class name
src XML resource name for XML dynamic data model
rootNode Root node type for dynamic data model

className usage is not compatible with src and rootNode attributes.

rootNode attribute is mandatory when using XML dynamic data models.

