
Smart engine settings
Agents
Synchronization servers
Account naming rules
Attribute translation tables
Soffid Objects
Sample scripts
Utility classes
Network discovery

Integration Engine

The administrator users can decide the engine mechanism for the synchronization task, i.e. when
the tasks are created and sent to external systems.

1. Task engine mode: allows you to select the synchronization mode. There are three
available options:

Read only: it is the option by default in the Soffid installation. No task is
synchronized to external systems.
Manual: only selected synchronization tasks are performed. You could synchronize
manually a user, check the "Propagates the changes" action on the Users page. Or
also synchronize a whole target system, check the Agents page.
Automatic: each change is automatically send to target systems.

2. Tasks limit per transaction: if a single transaction creates more than this number of
tasks, tasks will be held until Soffid administrator releases them. The administrator could
check them in the Sync server monitoring page.

3. Scripting language: Soffid allows you to create scripts and you can choose the scripting
language:

Beanshell
Javascript

Smart engine settings
Description

Screen overview

Standard attributes

https://bookstack.soffid.com/uploads/images/gallery/2024-03/image-1710860385281.png
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/users
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/agents
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/sync-server-monitoring

Autodetected

Read Only: use this option after the Soffid installation until you have at least one
target system configured to test the synchronization.

Manual: use this option for testing environments, or at the beginning of a live
release.

Automatic: use this option for live environments, or also for the testing
environments when the platform is mature.

Use a high task limit when you are comfortable with the configured processes of
Soffid, for instance, 1000 or 10000 depending on the number of accounts of these
external systems.

Confirm changes Allows you to update the engine settings.

Undo Allows you to cancel the changes made and not confirmed.

Soffid offers a set of sample scripts. You can find examples visiting the Sample scripts page.

Additionally, in the initial configuration of the container, we can configure the
SOFFID_TRUSTED_SCRIPTS environment variable to allow the use of insecure classes. You
can find this information visiting the Installing IAM Console page.

Tips
Use the task engine mode for these scenarios:

Tasks limit per transaction:

Actions

https://bookstack.soffid.com/books/administration-scripting/page/sample-scripts
https://bookstack.soffid.com/link/27#bkmrk-4.-installation

Soffid administrator has the chance to easily customize attribute mappings for some connectors
addons, without having to code it using Java. Soffid provides a graphical interface to perform
attribute mapping.

An agent will appear disabled when this agent won't have a server assigned. Bear in mind to select
the “Disabled” flag on Server URL criteria when you will query if you want to search for disabled,
but defined agents.

1. Synchronization server

2. Account naming rules

3. User type

4. Password policies

Agents
Description

Soffid agents are the tool that allows the connection between the Soffid console and the
target systems. To establish the connection with target systems, Soffid provides a large
number of connectors that will be able to set up into the Soffid console.

You could see the complete list of Synchronization Server Connectors.

Related objects

Standard attributes
Basic

https://bookstack.soffid.com/books/soffid-3-reference-guide/page/synchronization-servers
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/account-naming-rules
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/user-type
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/password-policies
https://bookstack.soffid.com/books/connectors

Task engine mode: shows the current task engine configuration. For more information
visit the Smart engine settings page.
Name: agent's identifying name.
Description: a brief description of the agent.
Usage: identify whether the accounts created are to be used for IAM or PAM. The IAM and
PAM tasks will be managed in separate queues. This attribute will be available in Soffid
3.5.10 or higher.

IAM
PAM:

The PAM accounts will be managed as a Shared thread internally.
The PAM accounts will be shared accounts and never will be single user
accounts.

Type: Identify the connector type to use. Different implementations of the server plugins
are included in the connectors installed into Soffid. Each type has a Java class bound, the
name of the Java class implementing the connector is displayed next to the connector
name.
Server: synchronization will be performed with the selected server. It is allowed to select
two servers in cases high disponibility will be necessary. If you choose two servers, when
one fails, the other will be used.

If “Each main synchronization server” is selected, the agent will be run by every
sync server.
If "-disabled-" is selected, the agent will be disabled.
If you select a single sync-server, the agent only will be run on that server.

Shared Thread: if it is enabled, the same thread will be shared to several
synchronization servers.
Dedicated Thread: if "Shared thread" is disabled, it will be available the option to choose
the number of threads to dedicate to the synchronization process.
Task timeout (ms): add a timeout to the synchronization server tasks (query, insert,
update, delete, update password, etc). If you add a timeout, when the connection gets
this timeout, the synchronization server will stop the request and add it to the queue for a
new retry later.
Long task timeout (ms): add a timeout to the reconciliation server tasks (user, group,
role, account, grants, etc). If you add a timeout, when the connection gets this timeout,
the synchronization server will stop the request (no retry is added).
Trust passwords: check if you can trust it to propagate their passwords to Soffid.
Trusted password agents differ from the non-trusted ones in:

Temporary passwords generated from the console only propagate to agents that
have trusted passwords checked. In the other case, the agents only receive
definitive passwords.
When a password has reached its expiry date, it will automatically be disabled on
agents where the trusted password is not checked, so the user can no longer access
it.
When the managed system detects a change in the user request password, the
password will be propagated to Soffid only if the agent associated trusted password
is checked.

https://bookstack.soffid.com/books/soffid-3-reference-guide/page/smart-engine-settings

Authoritative identity source: check if the agent will be used as the source for users'
information. It is usually checked for the first load of users into Soffid, and then it is
unchecked, being Soffid that manages users. Optionally, you can select a custom
workflow to process incoming changes.
Read-only: if it is checked (the selected option is Yes), no change will be applied to the
managed system. Only read operations will be allowed.
Paused task: if it is checked (the selected option is Yes), the system remains connected,
but the tasks in the queue will be retained. It is very useful when conducting tests and
ensuring that no tasks propagate, except the ones we are manually triggering (we pause,
make the changes, and when everything is fine, we remove the pause). As a rule, you
should pause when making configuration changes in production.
Manual account creation:

If you check NO, Soffid will create the new user accounts applying the defined
policies.
Check YES if you don't want Soffid to create automatically new accounts for the
users.

Role-based: when "Manual account creation" is not checked (option selected is No), it
will show "Role-based". Check it if only users with any role on this agent should be
created. When the identity or account loses its permissions, the account will be disabled.
Uncheck to allow users with no role on it.
Groups: when "Manual account creation" is not checked (option selected is No), it will
show "Groups". Identify the business units that are allowed to have an account on this
system.
User domain: it is the rule used to determine how to generate account names. If the
account name is the same as the user name (as is normally the case), the “Default user
domain” should be used. The user domain values are defined on the Account naming rules
page.
Password domain: determines the password policies that will be used. If the "Default
password domain" is selected, Soffid passwords will be shared with the managed systems.
The user domain values are defined on the Password policies page.
User Type: when "Manual account creation" is not checked (option selected is No), it will
show User Type. Only users of the selected types will be created. Any change made in this
field involves all accounts to be recalculated. New ones will be added to the repository
and managed systems. Some accounts will get disabled if the owner user no longer
belongs to any authorized user type.

If you want to forward the authentication requests to trusted target systems, you
must enable the Trust passwords option and the proper feature on the
Authentication page.

When uploading authoritative data for identities from a managed system, firstly, users will
be created in Soffid as indicated in the attribute mapping, and secondly, accounts will be
created for the managed systems only if the agent option "Manual account creation" is not
checked and only for User Types indicate.

https://bookstack.soffid.com/books/soffid-3-reference-guide/page/account-naming-rules
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/password-policies
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/authentication

The custom attributes depend on the used plugin.

Here you will find all the information needed about the available Soffid connectors to integrate
external managed systems.

1. AWS Connector
2. CSV Connector

Customizable CSV file (CSV Connector type)
3. Google Apps Connector
4. JSON REST Web Services Connector
5. LDAP Connector
6. Oracle Connector
7. Oracle EBS Connector
8. SAP Connector
9. SCIM Connector

10. Shell Connector
Invoker interface

11. SQL Connector
12. Windows Connector

HOWTO SSL access to Active Directory
Invoker interface for Active Directory

13. Zarafa Connector
14. SQL Server Connector

Some connector addons have associated integration workflows. On the Integration flows tab you
can view the integration flows related to the agent. You also can view in detail the workflows and
test them.

The attribute mapping tab only appears when the agent allows such customization. Soffid
administrators have the chance to easily customize attribute mappings without having to code
them using Java. The administrator users can select system objects and the Soffid objects related,
manage their attributes, and make either inbound and outbound attribute mappings.

Connector parameters

Integration flows

Attribute mapping

https://bookstack.soffid.com/books/soffid-3-reference-guide/page/aws-connector
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/csv-connector
https://bookstack.soffid.com/books/connectors/page/customizable-csv-file-csv-connector-type
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/google-apps-connector
https://bookstack.soffid.com/books/connectors/chapter/json-rest-web-services-connector
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/ldap-connector
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/oracle-connector
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/oracle-ebs-connector
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/sap-connector
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/scim-connector
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/shell-connector
https://bookstack.soffid.com/books/connectors/page/invoker-interface
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/sql-connector
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/windows-connector
https://bookstack.soffid.com/books/connectors/page/invoker-interface
https://bookstack.soffid.com/books/connectors/page/invoker-interface-for-active-directory-skip-to-end-of-metadata
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/zarafa-connector
https://bookstack.soffid.com/books/connectors/page/sql-server-connector

There is an action that creates all the default mapping depending on the agent connector type.
That option creates automatically system objects with their attributes and properties, you can
select them by clicking on the hamburger icon and then the Create default mapping option.
Once created the default mapping, those can be customized as required.

Some agents require to configure some custom attributes in their properties section.

These properties are specific for each type of connector. You could see all these properties by
visiting each connector type page.

This option is only available on some types of connectors. It is used to define methods that can be
called using the defined properties.

Each object mapping defines an agent object name and one bound Soffid object type.

The left hand side attributes are managed system attributes, so they are agent dependent that is
being configured. The right side attributes are Soffid attributes and must be selected from an
existing list.

A configuration agent must define object types that can be created on it. Each object mapping
defines an agent object name and needs bound Soffid object type.

At this column, the system's attribute name will be displayed.

When evaluating any expression, either the system or soffid attributes are available as script
variables. Moreover, the following variables are available:

Variable Content

serverService Server API that enables an easy object query [Search the
link "Public API Module" or "Data & Service model"]

serviceLocator Spring Singleton that gets access to any published service
bean. Only available on the main syncserver

Properties

Methods

Attributes

It is allowed to use bean Shell expression in the source when the mapping is one-way.

System attributes

remoteServiceLocator Singleton that gets access to any remotely published
service bean.

THIS HashMap that contains any soffid or system managed
attribute. It can be used when the attribute name is not a
valid java identifier.

dispatcherService Service that allows the script to get or update information
in the target system.

Script Example 1

/*js*/
var name = new javax.naming.ldap.LdapName(distinguishedName);
var rdns = name.rdns;
var g = null;
var rn = null;
for (var i = rdns.length - 2; i > 0; i--) {
 if (rdns[i].type == "DC") break;
 if (g == null) {g = "", rn = ""}
 else {g = g + "/"; rn = "," + rn}
 g += rdns[i].value.toLowerCase();
 rn = rdns[i].type+"="+rdns[i].value;
}
var gi = serviceLocator.groupService.findGroupByGroupName(g);
if (gi == null) {
 var parent = ! rn.contains("/") ?
 "world":
 rn.substring(0, rn.lastIndexOf("/"));
 gi = new com.soffid.iam.api.Group();
 gi.name = g;
 gi.description = rn;
 gi.parentGroup = parent;
 serviceLocator.groupService.create(gi);
}
return g;

Directions

https://bookstack.soffid.com/link/75#bkmrk-dispatcherservice
https://bookstack.soffid.com/uploads/images/gallery/2024-10/x8pmVMSlKOyG3m2a-image.png

At the center column, an arrow will show the direction of the information flows.

When the information flows from the system (left) to Soffid (right), the left column name can be
replaced by a bean shell expression. This expression will be evaluated on the system object prior to
uploading it to Soffid.

When the information flows from Soffid (right) to the managed system (left), the right column can
contain a bean shell expression that will be evaluated prior to provisioning the user.

Here are some examples:

System attribute Direction Soffid attribute Meaning

cn <=> accountName The account name is the
CN attribute of the LDAP

departmentNumber <=
for (group:
secondaryGroups) {
 if
(group.get("name").eq
uals(primaryGroup)) {
 return
group.get("description
");
 }
}
return null;

Assigns the group
description of the primary
group to the
departmentNumber
attribute

baseDN => "ou="+primaryGroup+",dc
=soffid,dc=org"

Assigns the base dn of the
user to the proper
organization unit that is
below dc=soffd,dc=org.

You can consult the list of Soffid attributes:

User Object
Account Object
Group Object
Role Object
Grant Object
Maillist Object

Soffid attributes

https://bookstack.soffid.com/link/75#bkmrk-user-object
https://bookstack.soffid.com/link/75#bkmrk-account-object
https://bookstack.soffid.com/link/75#bkmrk-group-object
https://bookstack.soffid.com/link/75#bkmrk-role-object
https://bookstack.soffid.com/link/75#bkmrk-grant-object
https://bookstack.soffid.com/link/75#bkmrk-maillist-object

Membership Object

When evaluating any expression, either the system or soffid attributes are available as script
variables. Moreover, the following variables are available:

Variable Content

serverService Server API that enables an easy object query [Search the
link "Public API Module" or "Data & Service model"]

serviceLocator Spring Singleton that gets access to any published service
bean. Only available on the main syncserver

remoteServiceLocator Singleton that gets access to any remotely published
service bean.

THIS HashMap that contains any soffid or system managed
attribute. It can be used when the attribute name is not a
valid java identifier.

dispatcherService Service that allows the script to get or update information
in the target system.

Script Example 1

firstName + " " + lastName

Script Example 2

attributes = serviceLocator.getUserService().findUserAttributes(userName);
return attributes.get("position");

Test

https://bookstack.soffid.com/link/75#bkmrk-membership-object
https://bookstack.soffid.com/link/75#bkmrk-dispatcherservice
https://bookstack.soffid.com/uploads/images/gallery/2024-10/JARjYypCM9nJoRLw-image.png
https://bookstack.soffid.com/uploads/images/gallery/2024-10/787o3XnTQI1jBCWp-image.png

For the definition of an object, you can check the system attributes defined, in both the final
system and in Soffid.

1. First of all, you need to click the Test button, then Soffid will display a text field and some
buttons to perform new actions.

2. Secondly, the text field must be filled in with the appropriate data. It can be a user, an account,
a group or another system object. It depends on the system object you are checking.

3. Then, you can choose the action to perform.

Text expression: allows you to test a system object.

Synchronize now: this allows you to synchronize the data object to the target system.

Fetch system raw data: brings the data of an object from a target system.

Fetch Soffid object: brings the data of a specific system object with processed data to
update into Soffid

It is allowed to define BeanShell or JavaScript scripts that will be triggered when data is loaded into
the target system (outgoing triggers).

The trigger result will be a boolean value, true to continue or false to stop.

A configuration agent can configure triggers related to the operation to be performed. There are
different trigger type, that determines the specific moment at which the script will be triggered.

Triggers can be used to validate or perform a specific action just before performing an operation or
just after performing an operation on target objects.

To access Soffid data, you can use source{"attributeName"}, which recovers the value of the
attributeName. That object will be Soffid format.

Also, you can use newObject{"attributeName"} to create the new value or
oldObject{"attributeName"} to get the old value of the target system, those objects will be
target system format.

Trigger

preInsert It will be triggered just before the insert action. It will be
used to validate or prevent the insert action, and also to
prepare objects or actions when a new object will be
inserted

Triggers

preUpdate It will be triggered just before the update action. It will be
used to validate or prevent update an object.

preDelete It will be triggered just before the delete action. It will be
used to validate or prevent delete an object.

postInsert It will be triggered just after the insert action. It will be
used to trigger or prevent an action.

postUpdate It will be triggered just after the update action. It will be
used to trigger or prevent an action.

postDelete It will be triggered just after the delete action. It will be
used to trigger or prevent an action.

preSetPassword It will be triggered just after the set password action. It will
be used to trigger or prevent an action.

postSetPassword It will be triggered just after the set password action. It will
be used to trigger or prevent an action.

Get the attribute company option 1:

Get the attribute company option 2

Example 1

company = source{"attributes"}{"company"};

userName = source{"userName"};
attributes = serviceLocator.getUserService().findUserAttributes(userName);
company = attributes.get("company");

Example 2

role = serviceLocator.getAplicacioService ().findRoleByNameAndSystem ("Domain Users", "AcitveDirectory");
rg = new java.util.HashMap();
rg.put ("grantedRoleId", role.getId ());

list = new java.util.LinkedList ();
list.add (rg);
newObject{"ownedRoles"} = list;

return newObject{"name"} != null

Example 3

On the Load trigger tab, it is allowed to set up a specific configuration for the agent and define
BeanShell or JavaScript scripts that will be triggered when data is loaded into Soffid (incoming
triggers).

Full reconciliation: switch off to enable incremental load process and disable Soffid
object removal.
Propagate changes: switch off to prevent sync-server to create synchronization tasks
after loading incoming changes.

To add a new trigger, it is mandatory first of all, to select a Soffid object on which the action will be
performed. Then to select the trigger, that determines the moment at which the script will be
triggered. Finally, define the BeanShell script that will be executed. The available objects are the
following:

User
Account
Group
Role
Grant

Triggers can be used to validate or perform a specific action just before performing an operation or
just after performing an operation into Soffid objects. The trigger result will be a boolean valu
e, true to continue or false to stop.

In a Load Trigger, it is not possible to access to mapping definitions configured on the attribute
mapping tab. It will be necessary to use newObject{"attributeName"} to get the new value, or
oldObject{"attributeName"} to get the old value. Those objects will be in Soffid format.

Trigger

if (oldObject.get("userPrincipalName") != null) {
	newObject.remove("userPrincipalName");
 newObject.put("groupType", oldObject{"groupType"});
}

For more examples, you can visit the Incoming Triggers examples page.

Load triggers

For more info about the Soffid format, you can visit the Soffid Objects page.

https://bookstack.soffid.com/books/connectors/page/incoming-triggers-examples
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/soffid-objects

preInsert It will be triggered just before the insert action. It will be
used to validate or prevent the insert action.

preUpdate It will be triggered just before the update action. It will be
used to validate or prevent update an object.

preDelete It will be triggered just before the delete action. It will be
used to validate or prevent delete an object.

postInsert It will be triggered just after the insert action. It will be
used to trigger or prevent an action.

postUpdate It will be triggered just after the update action. It will be
used to trigger or prevent an action.

postDelete It will be triggered just after the delete action. It will be
used to trigger or prevent an action.

Example 1

userName = newObject {"userName"};
system = "ActiveDirectory";

accounts = serviceLocator.getAccountService()
 .findAccountByJsonQuery("(system eq \"" + system + "\") AND name eq \"" + userName + "\" AND (type eq
\"I\")");
.....
user = serviceLocator.getUserService().findUserByUserName(userName);
.......

Example 2

...........
if (isFound) {
 newObject{"id-indicator"} = "1";
} else {
 if (contFalse > 0) {
 newObject{"id-indicator"} = "0";
 } else if (contNull > 0) {
 newObject{"id-indicator"} = null;
 }
}

For more examples, you can visit the Outgoing Triggers examples page.

https://bookstack.soffid.com/books/connectors/page/incoming-triggers-examples

Massive Actions refer to bulk or large-scale operations that can be performed across multiple
identities, accounts, or resources managed by an agent within the Soffid platform. Agents in Soffid
are components responsible for interacting with external systems (like directories, databases, or
applications) to manage and synchronize identity-related data. Massive actions allow
administrators to execute operations on a large number of items simultaneously, making it easier
to manage and maintain the system efficiently.

One of the main features of identity and access management (IAM) is automated user
provisioning. User provisioning is the process that ensures the users are created, with proper
permissions, updated, disabled, or deleted on to managed systems.

All managed systems must have an agent configuration, which will determine the way to perform
the provisioning.

Soffid shows information about the last time that the option was run and a report with the details.
You can access the report by clicking the verification icon (✓).

This option allows pushing to the managed system all the defined groups in Soffid.

Soffid shows information about the last time that option was run and a report with the details. You
can access the report by clicking the verification icon (✓).

The main purpose of reconciling process is to provide a mechanism to ensure that all users are
aligned on the specific roles and responsibilities. Reconcile process discovers new, changed,
deleted, or orphaned accounts to determine user access privileges.

Not every system connector has the capabilities needed to execute the reconcile process.

When "Read only" property, in Basic parameters, is checked (selected value is Yes), the reconcile
process only considers unmanaged accounts.

Soffid shows information about the last time that the option was run and a report with the details.
You can access the report by clicking the verification icon (✓).

Massive actions

Provisioning all users on to managed systems

Propagate groups to agent

Reconcile (load target system objects)

Load authoritative data for identities and groups

Identities use to live on authoritative identity sources and they do in Soffid as well. Each identity
may have any number of accounts on each managed system.

When "Authoritative identity source" is checked (option selected is Yes) Soffid will show the option
that allows the load authoritative data for identities and groups.

That option performs the operations to load data of groups and data of identities from the
managed system into Soffid, following the rules configured in the agent.

Soffid shows information about the last time that the option was run and a report with the details.
You can access to the report by clicking the verification icon (✓).

Also, Soffid creates a parameter on the Soffid parameters page, with information about the version
of the data. If you need to perform the load authoritative action, it will be mandatory to delete this
parameter before perform the action.

That option allows you to generate a report with all the potential changes that would be performed
on the managed system with the current agent configuration

If that option was performed previously, Soffid will show information about the last time that the
option was run and the report with the potential impact. You can access the report by clicking the
verification icon (✓).

Agents allow you to create additional data, on the "Account metadata" tab, to customize the
accounts created for that agent. This additional information will be loaded with the agent's
information, or calculated as defined in the mappings.
The additional data can be used in both mappings and triggers.

To get the Account Metadata value, or to put value, you need to use
accountAttributes{"ATT_NAME"}

Code: short name used by scripts and connectors to access the underlying information. It
is suggested to use short names without blanks or special characters to make it easier to
use.
Label: text displayed just beside the attribute value. It is advised to use short descriptions
in order to keep the screen cleaner.
Data type: The attributes can have different data types
Prevent duplicated values: mark this field as a unique key for the object type. There is
no chance of two objects with the same attribute value. Soffid smart engine will avoid the

Generate target system potential impact

Account metadata

Standard attributes

https://bookstack.soffid.com/books/soffid-3-reference-guide/page/soffid-parameters

creation of duplicated objects.
Multiple values: some attributes can contain multiple values for the same object. For
instance, an attribute containing the languages a user can speak can be multi-valued, as
a user can speak multiple languages.
Maximum number of rows to display: when an attribute is multivalued, the screen
size can grow a lot. To prevent such a big form, the system will only display a maximum
number of values, and a scroll bar will appear to browse through the attribute values.
Size: primarily for string attributes, specify the maximum length in characters of the
attribute value.
Values: primarily for string attributes, you can specify the allowed values for the
attribute. Then, the text box that the user has to fill in the data will be replaced by a drop-
down list.
Visibility expression: write an optional BeanShell expression to check if the field should
be displayed or not. The expression should return true or false. The following variables are
exposed to the expression:

ownerObject: current object owning the attribute.
value: current attribute value.
requentContext: tip about the screen using the attribute.
inputField: the ZK input object (ZK Framework).
inputFields: a map to get access to any other ZK input object (ZK Framework).
serviceLocator: locator to use any Soffid engine microservice.

Validation expression: write an optional BeanShell expression to check if the field value
is acceptable or not. The expression should return true if the value is acceptable. If the
expression returns false or any other object, a warning message will be displayed. When
the expression returns a string value, the return value will be considered the warning
message to present to the end-user. The following variables are exposed to the
expression:

ownerObject: current object owning the attribute
value: current value to evaluate.
requentContext: tip about the screen using the attribute
inputField: the ZK input object (ZK Framework).
inputFields: a map to get access to any other ZK input object (ZK Framework).
serviceLocator: locator to use any Soffid engine microservice.

onLoad trigger: write an optional BeanShell expression that will be executed just after
preparing the user interface. The script can modify in any way the inputField object before
it is displayed, but cannot modify other input fields.
The following variables are exposed to the expression:

ownerObject: current object owning the attribute
value: current value to evaluate.
requentContext: tip about the screen using the attribute
inputField: the ZK input object (ZK Framework).
inputFields: a map to get access to any other ZK input object (ZK Framework).
serviceLocator: locator to use any Soffid engine microservice.

onChange trigger: write an optional BeanShell expression that will be executed just
after the user has changed the object value. The script can modify in any way the
inputField object or any other input fields.

The following variables are exposed to the expression:
ownerObject: current object owning the attribute.
value: current value to evaluate.
requentContext: tip about the screen using the attribute.
inputField: the ZK input object (ZK Framework).
inputFields: a map to get access to any other ZK input object (ZK
Framework).
serviceLocator: locator to use any Soffid engine microservice.

Into the attribute mappings save the value of account metadata:

Get the value from the attribute account metadata to use it into a trigger

Query Allows you to query roles through different search
systems, Basic and Advanced.

Add new Allows you to add a new agent to the system. You can
choose that option on the hamburger menu or click the
add button (+).
To add a new role it will be mandatory to fill in the
required fields

Example 1

varX <= accountAttributes{"att_name"}

Example 2

strValue = source.get("attributes").get("att_name");
if (strValue != null) {

} else {

}

Actions
Agents query actions

https://bookstack.soffid.com/books/soffid-3-reference-guide/page/search-types

Delete Allows you to remove one or more agents by selecting one
or more records and next clicking the button with the
subtraction symbol (-).
To perform that action, Soffid will ask you for confirmation,
you could confirm or cancel the operation.

Download CSV file Allows you to download a CSV file with the basic
information of all agents.

Apply changes Allows you to create a new agent or update an existing
agent. To save the data it will be mandatory to fill in the
required fields

Preview changes When there are some changes to be applied (when the
configuration agent is updated), you can check them with
this option. If you click this button, Soffid will display a new
window with the list of users to be updated.

Apply now When the configuration agent is updated, this button will
be displayed. If you click this option the update action will
be performed. The progress bar will be displayed during
the execution of the process.
This action is performed asynchronously.

Delete Allows you to delete a specific agent. You can choose that
option on the trash icon.
To perform that action, Soffid will ask you for confirmation,
you could confirm or cancel the operation.

Undo Allows you to quit without applying any changes made.

Import Allows you to upload an XML file with the attribute
mapping data. This option deletes previous attribute
mappings and creates new attribute mapping.

Export Allows you to export an XML file with attribute mappings.

Create default mapping Allows you to create automatically default mappings for
the specific Type selected.

Test Check if there is a connection to the target system.

Open flow Opens a window with the workflow.

Test Allows you to test the workflow.

Apply changes/Save Allows you to update the agent with the changes made on
Attribute mappings.

Agent detail actions

Integration flows

Attribute mapping

Add System Objects Allows you to add a new system object based on a Soffid
object. You need to click the button with the add symbol
(+) located at the end of the row of System Objects. Once
you click the button, Soffid adds new fields to the form to
add new attributes, properties, and/or Triggers depending
on the agent type.
It is mandatory to apply changes by clicking the diskette
button to update the agent.

Delete System Objects Allows you to delete a system object. You need to click the
button with the subtraction symbol (-) located at the end
of the row system object which you want to delete.
It is mandatory to apply changes by clicking the diskette
button to update the agent.

Add Property Allows you to add properties to a specific system object.
You need to click the button with the add symbol (+)
located at the end of the row of Properties. Once you click
the button, Soffid adds new fields to the form to add the
property.
It is mandatory to apply changes by clicking the diskette
button to update the agent.

Delete Property Allows you to delete properties from a specific system
object. You need to click the button with the subtraction
symbol (-) located at the end of the row property which
you want to delete.
It is mandatory to apply changes by clicking the diskette
button to update the agent.

Add System attribute Allows you to add attribute mappings to a specific system
object. You need to click the button with the add symbol
(+) located at the end of the row of the System attribute.
Once you click the button, Soffid adds new fields to the
form to add the attribute.
It is mandatory to apply changes by clicking the diskette
button to update the agent.

Detele System attribute Allows you to delete attribute mappings of a specific
system object. You need to click the button with the
subtraction symbol (-) located at the end of the row
System attribute which you want to delete.
It is mandatory to apply changes by clicking the diskette
button to update the agent.

Test expression Allows you to test a system object. When you click that
option, Soffid will show you new fields and operations to
test the system attribute config.

Synchronize now Allows you to synchronize a specific system object to the
target system.

Fetch system raw data Brings the data of a specific system object from a target
system.

Fetch Soffid object Brings the data of a specific system object with processed
data to update into Soffid

Add Trigger Allows you to add a trigger to a specific system object that
will be executed when data is loaded into a target system.
You need to click the button with the add symbol (+)
located at the end of the row of Trigger. Once you click the
button, Soffid adds new fields to the form to add the
trigger.
It is mandatory to apply changes by clicking the diskette
button to update the agent.

Delete Trigger Allows you to delete a trigger of a specific system object.
You need to click the button with the subtraction symbol (-
) located at the end of the row Trigger which you want to
delete.
It is mandatory to apply changes by clicking the diskette
button to update the agent.

Apply changes Allows you to update the Load trigger data with the
changes made on the Load Trigger

Add Trigger Allows you to add a trigger that will be executed when
data is loaded into Soffid.
You need to click the button with the add symbol (+)
located at the end of the row. Once you click the button,
Soffid adds new fields to the form to add the trigger. Then
you need to select the Object and the type of trigger and
write the customized script.
Finally, you need to apply changes to update the agent.

Delete Trigger Allows you to delete a trigger. You need to click the button
with the subtraction symbol (-) located at the end of the
row which you want to delete.
It is mandatory to apply changes by clicking the diskette
button to update the agent.

Provisioning all users on to managed systems Run the process to ensure the users are created, with
proper permissions, updated, disabled, or deleted on to
managed systems.

Propagate groups to agent Run the process to push all the groups of Soffid into the
managed system.

Reconcile (load target system objects) Run the process to discover new, changed, deleted, or
orphaned accounts to determine user access privileges.

Load authoritative data for identities and groups Run the process to load data of groups and data of
identities from the managed system into Soffid

Generate target system potential impact Generate a report with all the potential changes that would
be performed on the managed system.

Load triggers

Massive actions

Account metadata

Add account metadata Allows you to update the agent with the changes made on
metadata.

Add account metadata Allows you to add account metadata. You need to click the
button with the add symbol (+) located at the end of the
row. Once you click the button, Soffid shows you an empty
form to fill in with the new account metadata.
Finally, you need to apply changes.

Delete account metadata Allows you to delete one account metadata. First, you
need to click on the account metadata which you want to
delete. Then Soffid shows a form with the detailed account
metadata. On the hamburger icon of that form, you can
find the delete action.
In this case, Soffid will not ask you for confirmation to
delete.

In the agent's configuration, it may be possible to use scripting to include logic in the attribute
mappings and in the trigger scripts.

In the attribute mapping, if you use a script on one side, it will be mandatory to a single direction to
the other side:

System attribute <= script
script => Soffid attribute

Below, an easy script to send a full name to the system:

Below, a more complex script to create the main domain if it doesn't exist in Soffid:

Scripting

system attribute <= return firstName + lastName;

String mailDomain = null;
if (email != void && email != null && email.contains("@")) {
 String[] mailTokens = email.split("@");
 mailDomain = mailTokens[1];
}
com.soffid.iam.service.MailListsService service = com.soffid.iam.ServiceLocator.instance().getMailListsService();
com.soffid.iam.api.MailDomain domain = service.findMailDomainByName(mailDomain);
if (domain==null) {

The passwords a user has on an agent will be synchronized with any other "single user account"
the user has on this agent. Shared accounts will never get their password synchronized.

Password in an agent will be also synchronized with any other account the user has on other
agents that are sharing the same password domain.

The password change can be produced by an operator using the Soffid console, the user itself
using the Soffid Self Service portal, or a timed automatic task. Furthermore, some managed
systems can forward their password to Soffid in order to get them synchronized. In order to accept
these password changes coming from managed systems, the trusted passwords box must be
checked for the source agent.

Mind that this is the flow for normal user passwords. Temporary passwords generated by the Soffid
console will only be sent to agents marked as trusted. Agents not checked as trusted will have a
random new password instead. Later, when the user changes the password on Soffid or any trusted

 domain = new com.soffid.iam.api.MailDomain();
 domain.setCode(mailDomain);
 domain.setDescription(mailDomain);
 domain.setObsolete(new Boolean(false));
 domain = service.create(domain);
}
return mailDomain;

=> mailDomain

You could find a set of sample scripts: Sample scripts

You could find a link with the SCIM Query Language used in some methods as
findUserByJsonQuery("query"). You can visit the SCIM chapter.

Below you could find a set of custom utility classes: Utility classes

More information
Password synchronization

https://bookstack.soffid.com/books/soffid-3-reference-guide/page/sample-scripts
https://bookstack.soffid.com/books/scim
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/utility-classes

system, the new password will be notified to Soffid by the managed system, and every agent on
the same password domain will actually get the new password.

The agent configuration sets the way accounts are created and disabled.

Whenever a user is modified, the following rules will be applied to check if the user should have or
not an account on this agent:

1. The user type is checked against valid user types.
2. If there is a business unit or group bound to the agent, the user membership will be

assessed.
3. If the role based box is checked, the system will verify if the user has any role or

entitlement assigned to this agent.

If the user does not apply for any of the conditions, every account the user has at this agent will be
changed to Disabled status.

If the user verifies every one of the conditions, the user can have an account on this agent. Every
account the user has at this agent will be changed to Enabled status.

Unless the "Manual account creation" is checked, if the user can have an account on this agent, but
it has no one, the account creation method will be invoked. To create it, Soffid will search for the
user domain bound to this agent and will follow its configuration. If the user domain is configured
with a script, this script will be executed and the result value will be accepted as the new account
name. Mind that if the script returns a null value, no account can be created.

If the returning value from the script clashes with an existing account, the existing account will
remain unchanged, unless the existing account is marked as an unmanaged account. In such a
case, the account will be changed from an unmanaged state to a single user.

After the agent configuration you could check on the monitoring page if the service is running in
the Synchronization Server, please go to:

Main Menu > Administration > Monitoring and reporting > Syscserver monitoring

Agents account management

Operational
Monitoring

If you are checked "Authorized identity source", an automatic task to load identities from the
managed system to Soffid is available, please go to:

Main Menu > Administration > Monitoring and reporting > Scheduled tasks

And you will something like "Import authoritative data from <AGENT_NAME>".

You can also run the Authoritative load from the Massive actions tab in the Agent

If you are configured the "Attribute Mapping" tab with some of our objects: "user, account, role,
group or grant", an automatic task to synchronize these objects from the managed system to Soffid
is available, please go to:

Main Menu > Administration > Monitoring and reporting > Scheduled tasks

And you will do something like "Reconcile all accounts from <AGENT_NAME>".

Tasks
Authoritative

Reconcile

https://bookstack.soffid.com/uploads/images/gallery/2022-07/image-1659012997074.png
https://bookstack.soffid.com/uploads/images/gallery/2022-07/image-1659013094703.png

You can also run the Reconcile from the Massive actions tab in the Agent

Regarding the synchronization of the objects, there are two possible options:

If the "Read Only" attribute is checked in the "Basics" tab (select Yes option), only the
changes in the managed systems will be updated in Soffid. We recommend these options
until the global configuration of Soffid will be tested.
If the "Read Only" attribute is not checked in the "Basics" tab (select No option), all the
changes in Soffid or the managed system will be updated in the other. Note that this
synchronization must be configured in the "Basic" tab correctly.

Synchronization

https://bookstack.soffid.com/uploads/images/gallery/2022-07/image-1659013025873.png
https://bookstack.soffid.com/uploads/images/gallery/2022-07/image-1659013126808.png

Sync server is the engine responsible for connecting Soffid with data sources or managed systems.

Soffid allows you to configure different synchronization servers. These synchronization servers are
installed and configurated using command line tool.

Whenever an action is performed on any Soffid object, a synchronization task is created in Soffid
database.

Initially, most of the tasks should be forwarded to every managed system connector. The specific
system connector will be responsible for applying (or ignoring) the task to the managed system.

The normal synchronization server flow for a task is as follows:

1. Engine timely reads pending tasks table (SC_TASQUE). To avoid two sync servers to process the
same task, the column TAS_SERVER is updated to reflect the actual server that is processing it.

2. Engine manage tasks priorities and updates the task queue. Engine keeps track of one task
queue for each managed system connector.

Soffid allows you to configure the parameter soffid.sync.engine.threads with the number of
threads available to run the tasks.

3. Engine has created some execution threads to forward each task to the specific connector
class. During this process, dispatcher can decide to reject (mark as done) the task without
forwarding it.

4. The specific connector class gets additional information about the task from core services.

Synchronization servers
Description

More information about how to install sync server on the Installation chapter. Here you can
find information on how to install a sync server in different environments.

For more information about this parameter you can visit the Soffid Parameter page.

https://bookstack.soffid.com/books/installation
https://bookstack.soffid.com/link/86#bkmrk-parameter-descriptio-0

5. Task is removed from database when every dispatcher has done it.

This architecture and its optimized engine allow Soffid to achieve great performance.

Name: name of the synchronization server.
URL: URL of the synchronization server.
Type: there are different kinds of synchronization servers:

Synchronization server: that server connects to the main database and allocates
the task to the different agents.
Synchronization agent proxy: uses a push mechanism. The main Synchronization
server will send the tasks to the synchronization agent proxy when it detects tasks
for the proxy. That server does not connect to the main database.
Remote synchronization server: uses a pull mechanism. That server is asking for
its tasks, when it asks and the Synchronization server has a task for the remote, the
Synchronization server will send that tasks. That server does not connect to the
main database.
Synchronization agent gateway: this server is the broker between the main
synchronization server and the remote servers.

Java options: additional parameters to pass to JVM (Java Virtual Machine). Some useful
parameters:

For a high capacity server are: -Xmx1024M
For debugging communication: -Djavax.net.debug=ssl

Screen overview

Standard attributes

https://bookstack.soffid.com/uploads/images/gallery/2022-01/image-1641823484543.png
https://bookstack.soffid.com/uploads/images/gallery/2022-01/image-1641823523641.png

To enable sync server to use old TLS version in client connections (from sync server
to a managed system) add -Djdk.tls.client.protocols=TLSv1,TLSv1.1 (Be in mind TLSv1.2
will be the default version, but some old applications can use TLSv1)
To enable sync server to use old TLS version for incoming connections (from a server
or desktop to the sync server) add -Dsoffid.tls.protocols=TLSv1.1,TLSv1,TLSv1.2,TLSv1.3 -
Dsoffid.tls.excludedCiphers="^.*_(MD5)$" Mind that the system security can be
compromised by using deprecated TLS protocols
To define how long Java keeps the DNS (domain name resolution) responses in cache
you can add the paramameters -Dsun.net.inetaddr.ttl=1 or the newest -
Dsun.net.inetaddr.ttl=1 "time-to-live" (TTL).

Download CSV file Allows you to download a CSV file with the information of
all synchronization servers.

Apply changes Allows you to save the synchronization server data and
quit.

Save Allows you to save the synchronization server data

Undo Allows you to undo the changes to quit without save them.

Delete To delete a sync server you can click on the hamburger
icon and then click the delete button (trash icon).
Soffid will ask you for confirmation to perform that action,
you could confirm or cancel the operation.

If you change the Java Options of an existing Syncserver, you will need to restart the
Syncserver. You can visit the Sync server monitoring page for more information about how
to restat the Syncserver.

If you are working on Soffid Console version 2.x to change the capacity you need to edit the
iam-console.vmoptions file and change the -Xmx attribute.

Actions
Synchronization server query

Synchronization server detail

https://bookstack.soffid.com/books/soffid-3-reference-guide/page/sync-server-monitoring

When you are configuring an agent, you have to indicate the user domain which will be used to
create new accounts, that user domain refers to the Account naming rules defined on the Soffid
console. You can visit the Agents page for more information.

Code: code used to identify the account naming rule.
Description: a brief description of the rule. That value will be displayed to select the user
domain on the agent's setup.
User domain type: use to define the kind of

Main user name: use the main user name.
Assigned by the operator: the operator will assign the account name.
Script: allows you to configure the script condition and script creation of account
naming.
Server Addon: allows selecting an addon to generate the account naming rules.

Generator: allows you to select an addon when the user domain type selected is "Server
addon".
Create account condition: defines the conditions to enable or prevent the creation of
the account. It is only available when the Script option is selected in the User domain
type.
Script: computes the name to assign to the user account. If the script returns null, the
account is not going to be created. It is only available when the Script option is selected in
the User domain type.

The create account condition enables or prevents the creation of the account.

Account naming rules
Definition

Account naming rules define how to generate account names to connect with final systems.
The normal case is the account name will be the same as the user name, in other cases,
here you could define the customized account name rules.

Standard attributes

Create account condition

https://bookstack.soffid.com/books/soffid-3-reference-guide/page/agents

user User object: Details

attributes User attributes map

groups The groups that the user belongs to.
It's composed of a java map. The key is the group name,
and the value is the Group object

groupsList The groups that the user belongs to.
It's composed of a java list of Group objects

serviceLocator Helper to get access to Soffid microservices

userDomain User domain object

system Target system object

boolean Return true if the account can be created

Only users with mail address in soffid.com can have an account:

The create account script computes the name to assign to the user account. If the script returns
null, the account is not going to be created.

user User object: Details

attributes User attributes map

Available objects

Expected result

Examples

"soffid.com".equals(user.mailDomain)

Account name Script

Available objects

http://www.soffid.org/doc/console/latest/uml/com/soffid/iam/api/User.html
http://www.soffid.org/doc/console/latest/uml/com/soffid/iam/api/Group.html
http://www.soffid.org/doc/console/latest/uml/com/soffid/iam/api/Group.html
http://www.soffid.org/doc/console/latest/iam-core/apidocs/com/soffid/iam/ServiceLocator.html
http://www.soffid.org/doc/console/2.8.1/uml/com/soffid/iam/api/UserDomain.html
http://www.soffid.org/doc/console/2.8.1/uml/com/soffid/iam/api/Application.html
http://www.soffid.org/doc/console/latest/uml/com/soffid/iam/api/User.html

groups The groups that the user belongs to.
It's composed of a java map. The key is the group name,
and the value is the Group object

groupsList The groups that the user belongs to.
It's composed of a java list of Group objects

serviceLocator Helper to get access to Soffid microservices

userDomain User domain object

system Target system object

String Return the account name to use

Add new Allows you to add a new account naming rule in the
system. To add a new agent it is necessary to fill in the
required fields.

Delete Allows you to remove one or more agents by selecting one
or more records on the list.

Export Allows you to export a CSV file with the account naming
rules configuration.

Import Allows you to upload a CSV file with the account naming
rules configuration to add new rules to the system.
First, you need to pick up a CSV file, that CSV has to
contain a specific configuration. Then you need to check
the contents. And finally, you need to select the mappings
for each column of the CSV file to import the data correctly
and click the Import button.

Expected result

Example

// Uses the email address as the account name
user.shortName+"@"+user.mailDomain

Actions
Account naming rules query

Account naming rules detail

http://www.soffid.org/doc/console/latest/uml/com/soffid/iam/api/Group.html
http://www.soffid.org/doc/console/latest/uml/com/soffid/iam/api/Group.html
http://www.soffid.org/doc/console/latest/iam-core/apidocs/com/soffid/iam/ServiceLocator.html
http://www.soffid.org/doc/console/2.8.1/uml/com/soffid/iam/api/UserDomain.html
http://www.soffid.org/doc/console/2.8.1/uml/com/soffid/iam/api/Application.html

Apply changes Allows you to save new account naming rules or to save an
updated account naming rule.

Undo Allows you to undo any changes made.

Delete Allows you to remove one account naming rule.

Soffid provides an easy to use mechanism to translate references or external codes into internal
codes. For example, the HHRR application could be using a diferent coding scheme for business
units.

To deal with this data mismatch, users can extend the data model, or can either use translation
tables. This screen allows the user to create and maintain such tables. This tables can also be
downloaded or uploaded as CSV files, enable the import of data contained into spreadsheets.

Usage of translation table is bound, but not restricted to, attribute translation expressions, by using
trigger scripts, through the use of serverService interface.

Attribute translation tables
Definition

Screen overview

Standard attributes

https://bookstack.soffid.com/link/72#bkmrk-attribute-mapping
https://bookstack.soffid.com/uploads/images/gallery/2024-10/2vbxvU5KLu0NA3vR-image.png

Domain: the domain column represents the translation table name.
Column 1
Column 2
Column 3
Column 4
Column 5

Column 1 to 5 meaning is user defined. Usage of translation table is bound, but not restricted to,
attribute translation expressions, through the use of serverService interface.

Query Allows to query groups through different search systems,
Quick, Basic and Advanced.

Add new Allows you to add a new attribute translation table. That
option adds a new row on the table to fill in the data. It will
be mandatory to apply changes to save the data.

Delete Allows you to remove one or more agents by selecting one
or more records on the list. Or delete one by one.

Import Allows you to upload a CSV file with the attribute
translation table data to add to the system.
First, you need to pick up a CSV file, that CSV has to
contain a specific configuration. Then you need to check
the contents. And finally, you need to select the mappings
for each column of the CSV file to import the data correctly
and to click the Import button.

Download CSV file Allows you to download a CSV file with the information of
all attribute translation tables.

Apply changes Allows you to save new attribute translation tables or to
save updated attribute translation tables.

Undo Allows you to undo any changes made.

Actions

Examples
Example 1

Long userId = source{id};
for (account: serverService.getUserAccounts(userId, "AD soffid.pat")) {
 //TO-DO
}

https://bookstack.soffid.com/books/soffid-3-reference-guide/page/search-types

Example 2

lCentros = serviceLocator.getAttributeTranslationService().findByColumn1("CENTROS", "Madrid");
if (lCentros != null) {
 for (var i = 0; i < lCentros.length; i++) {
 if (lCentros[i] != null) {
 	out.println("** Centro - " + lCentros[i].column1 + " - " + lCentros[i].column2 + " - "
 + lCentros[i].column3 + " - " + lCentros[i].column4);
 }
 }
}

Example 3

lServer = serviceLocator.getAttributeTranslationService().findByExample("SERVER_COPIAS", null, null);
if (lServer != null) {
	out.println("** SERVER_COPIAS - " + lServer);
}

You can consult the list of Soffid attributes:

1. User Object
2. Account Object
3. Group Object
4. Role Object
5. Grant Object
6. Maillist Object
7. Membership Object
8. dispatcherService
9. Authoritative change object

A user objects are maps that hold the information belonging to a single user account.

Attribute Type Description

id Long user id

accountId Long account id

accountName String account name

system String managed system (agent) name

accountDescription String account description

active Boolean true if user is active

accountDisabled Boolean true if account is diabled

Soffid Objects

User object

https://bookstack.soffid.com/link/75#bkmrk-user-object
https://bookstack.soffid.com/link/75#bkmrk-account-object
https://bookstack.soffid.com/link/75#bkmrk-group-object
https://bookstack.soffid.com/link/75#bkmrk-role-object
https://bookstack.soffid.com/link/75#bkmrk-grant-object
https://bookstack.soffid.com/link/75#bkmrk-maillist-object
https://bookstack.soffid.com/link/75#bkmrk-membership-object

Attribute Type Description

mailAlias String blank separated mails

userName String user name

primaryGroup String user's primary group name

comments String user's comments

createdOn Date user creation date

modifiedOn Date user last modification date

mailDomain Date user mail domain (email right side of
@)

fullName String user full name

shortName String user mail name (email left side of @)

firstName String user first name

lastName String user last name

lastName2 String user second last name (when
applicable)

mailServer String mail server host name

homeServer String home drive server host name

profileServer String roaming profile server host name

phone String user's phone number

userType String user type

createdBy String user name creator of this user

modifiedBy String user name modifier of this user

secondaryGroups List<Map<String,Object>> list of groups the user belongs to,
including primary group
The attributes of the inner map are
described later

Attribute Type Description

attributes Map<String,String> additional user attributes

grantedRoles List<Map<String,Object>> list of grants directly granted to the
user

allGrantedRoles List<Map<String,Object>> list of grants directly on indirectly
granted to the user

granted List<String> list of role names and group names
directly granted to the user

allGranted List<String> list of role names and group names
directly or indirectly granted to the
user

An account object holds the information belonging to an account.

Attribute Type Description

accountDescription String account description

accountDisabled Boolean true if account is diabled

accountId Long account id

accountName String account name

allGranted List<String> list of role names directly or indirectly
granted to the user

allGrantedRoles List<Map<String,Object>> list of grants directly on indirectly
granted to the user

attributes Map<String,String> additional account attributes

granted List<String> list of role names directly granted to
the user

grantedRoles List<Map<String,Object>> list of grants directly granted to the
user

lastLogin Calendar lastLogin

lastPasswordUpdate Calendar lastPasswordUpdate

lastUpdate Calendar lastUpdate

passwordExpiration Calendar passwordExpiration

Account object

Attribute Type Description

passwordPolicy String password policy

system String managed system (agent) name

type AccountType "U"=user, "S"=shared,
"P"=privileged, "I=ignored

An group object holds the information belonging to a group.

Attribute Type Description

groupId Long group id

name String group name

description String group description

parent String parent group name

server String home server host name

disabled boolean true if the group is disabled

accountingGroup String group accounting information

type String group type

driveLetter String home server letter to connect to

users List<Map<String,Object>> list of users belonging to this group

userNames List<String> list of user names belonging to this
group

allUsers List<Map<String,Object>> list of users directly or indirectly
belonging to this group

allUserNames List<String> list of user names either directly or
indirectly grantee of this role

grantedRoles List<Map<String,Object>> list of roles granted to this group

Group object

Attribute Type Description

grantedRoleNames List<String> list of role names granted to this
group

An role object holds the information belonging to a role.

Attribute Type Description

roleId Long role id

system String managed system (agent) name

name String role name

application String application system name

category String role category

passwordProtected boolean true if role should be password
protected (where applicable)

description String Role description

wfmanaged boolean true if role should be displayed in self
service requests

domain String custom domain for this role: Use
com.soffid.iam.api.DomainType
constants or configured custom
domain

ownedRoles List<Map<String,Object>> list of roles granted to this one

ownerRoles List<Map<String,Object>> list of roles grantee of this one

ownerGroups List<Map<String,Object>> list of groups grantee of this role

grantedAccountNames List<String> list of account names directly grantee
of this role

grantedAccounts List<Map<String,Object>> list of users directly grantee of this
role

allGrantedAccountNames List<String> list of account names either directly
or indirectly grantee of this role

allGrantedAccounts List<Map<String,Object>> list of users either directly or
indirectly grantee of this role

attributes Map<String,Object> role's custom attributes

Role object

The objects grant, grantedRole and allGrantedRoles are used to assing roles to accounts and roles.

Attribute Type Description

domainValue String grant value (if any)

grantedRole String granted role name

grantedRoleId Long granted role id

grantedRoleObject role object granted role

grantedRoleSystem String granted role managed system (agent)
name

id Long grant id

ownerAccount String grantee account name

ownerAccountObject account object grantee account

ownerGroup String grantee group name

ownerRoleId String grantee role id

ownerRoleName String grantee role name

ownerSystem String grantee account or role managed
system name

ownerUser String grantee user name

Example to map a grant object (assign a role to an account):

System attribute Direction Soffid attribute

role_name => grantedRole

account_name => ownerAccount

Example to map a grantedRole object (assign a role as a child of another role):

Grant object
Grant, grantedRole & allGrantedRoles

Examples
Grant

GrantedRole

System attribute Direction Soffid attribute

role_name => grantedRole

parent_role_name => ownerRoleName

Example to map a allGrantedRoles object in a holderGroup (assign a role to an account in a specific
group):

System attribute Direction Soffid attribute

role_name => grantedRole

parent_role_name => ownerRoleName

group_code => domainValue

group_code => holderGroup

userName => ownerUser

Attribute Type Description

id Long internal mail list id

name String mail list name (the initial part, before
the @ sign)

domain String mail list domain (the remaining part
after the @ sign)

system String managed system (agent) name

description String mail list description

users String array user names that are bound to this
mail list

groups String array group names thta are subscribed to
this mai list

roles String array role names that grant access to this
mail list

AllGrantedRoles

Maillist object

Attribute Type Description

lists String array Nested mail lists

explodedUsers String array Names of the users that should be
subscribed to this mail list, including
the users that should be subscribed
due to group or role membership

explodedUserAddresses String array Mail addresses of any exploded User

A membership object contains the user account information as well as the group the user belongs
to.

Attribute Type Description

userName String User name

user Map<String,Object> user object

groupName String Group name

group Map<String,Object> group object

attributes Map<String,Object> Membership custom attributes

dispatcherService is an object available from agents' attribute translation rules.

This object contains four methods:

method name parameters result type comments

soffidToSystem ExtensibleObject
 soffidObject

ExtensibleObject Uses attribute translation
tables to transform a soffid
object to a target system
object.
Mind to fill-in objectType
property to use the proper
object mapping

Membership object

dispatcherService

http://www.soffid.org/doc/console/2.0.0-2/iam-common/apidocs/com/soffid/iam/sync/intf/ExtensibleObject.html
http://www.soffid.org/doc/console/2.0.0-2/iam-common/apidocs/com/soffid/iam/sync/intf/ExtensibleObject.html

method name parameters result type comments

systemToSoffid ExtensibleObject
 systemObject

ExtensibleObject Uses attribute translation
tables to transform a target
system object to a Soffid
object.
Mind to fill-in objectType
property to use the proper
object mapping

search ExtensibleObject
 exampleObject

ExtensibleObject Uses the exampleObject to
perform a query by
example on the target
system. If the object exists
on the target system, it is
returned.
Mind to fill-in objectType
property with the desired
system object type

invoke String verb
String action
Map parameters

List of Map This method allows
arbitrary executions on the
target system, but it
semantics can change
depending on the
connector used.
For instance, it can be used
to perform a GET on the
target system in REST
connector, can issue an
LDAP query on
ActiveDirectory connector,
can execute a SELECT
sentence on a SQL
connector, or can execute
an operating system
command in Shell
connector.
The results are returned as
a list of objects (map).

Examples
Snippet to query the sys_id attribute for a grant owner

System.out.println("Searching id for "+ownerRoleName);
com.soffid.iam.sync.intf.ExtensibleObject eo = new com.soffid.iam.sync.intf.ExtensibleObject();
eo.setObjectType("ROLE");
eo{"name"} = ownerRoleName;
eo = dispatcherService.search(eo);
System.out.println("FOUND "+eo{"sys_id"});
return eo{"sys_id"};

http://www.soffid.org/doc/console/2.0.0-2/iam-common/apidocs/com/soffid/iam/sync/intf/ExtensibleObject.html
http://www.soffid.org/doc/console/2.0.0-2/iam-common/apidocs/com/soffid/iam/sync/intf/ExtensibleObject.html
http://www.soffid.org/doc/console/2.0.0-2/iam-common/apidocs/com/soffid/iam/sync/intf/ExtensibleObject.html
http://www.soffid.org/doc/console/2.0.0-2/iam-common/apidocs/com/soffid/iam/sync/intf/ExtensibleObject.html

Snippet that performs a REST query to get group to role assignments
in ServiceNow

list = dispatcherService.invoke ("GET",
 "https://arxusdev.service-
now.com/api/now/table/sys_group_has_role?sysparm_exclude_reference_link=true&sysparm_display_value
=all&sysparm_fields=role%2Cgroup&sysparm_query=group="+sys_id,
 null).
 get(0).get("result")

r = new java.util.LinkedList();
for (d: list)
{
 grant = new java.util.HashMap();
 grant{"grantedRole"} = d.get("role").get("display_value");
 grant{"grantedRoleSystem"} = "ServiceNow";
 grant{"ownerRoleName"} = name;
 grant{"ownerSystem"} = "ServiceNow";
 r.add (grant);
}
return r;

Snippet of invoke usage on a relational database

// Table ITREPRT
role = source{"granted"}.size() == 0 ? "" : source{"granted"}.get(0);
System.out.println ("************** ROLE "+role);
args = new java.util.HashMap();
args.put("user", source{"accountName"}.toUpperCase());
if (role.equals ("Receptores PR") || role.equals("Jefes_Personal")) {
 r = dispatcherService.invoke("select", "* from ITREPRT where IDUSER=:user", args);
 if (r.size() == 0) {
 dispatcherService.invoke("insert", "into ITREPRT(IDUSER,NOMECO) values (:user, 1)", args);
 }
} else {
 dispatcherService.invoke("delete", "from ITREPRT where IDUSER=:user", args);
}
// TABLE MRGEUCT
cc = source{"attributes"}{"dominio"};
if (source{"userType"} .equals ("T")) {

A user objects are maps that hold the information belonging to a single user account

 cc = source{"userName"}.substring(1);
}
while (cc != null && cc.startsWith("0")) cc = cc.substring(1);
System.out.println ("************** COST CENTER "+cc);
if (cc != null && ! cc.trim().isEmpty())
{
 args = new java.util.HashMap();
 args.put("user", source{"accountName"}.toUpperCase());
 args.put("cc", cc);
 r = dispatcherService.invoke("SELECT", "* from MRGEUCT where IDUSER=:user and MOARPR=:cc", args);
 if (r.size() == 0) {
 dispatcherService.invoke("INSERT", "into MRGEUCT(MOARPR,CENTRA, IDUSER, NOTIFI) "+
 "values ('II', :cc, :user, 'S')", args);
 dispatcherService.invoke("INSERT", "into MRGEUCT(MOARPR,CENTRA, IDUSER, NOTIFI) "+
 "values ('BM', :cc, :user, 'S')", args);
 dispatcherService.invoke("DELETE", "FROM MRGEUCT WHERE CENTRA!=:cc AND IDUSER=:user", args);
 }
}
return true;

Snippet of invoke usage on a Active Directory I

hashMap = new java.util.HashMap();
list = serviceLocator.getDispatcherService().invoke("AD soffid.pat",
 "select",
 "(&(objectClass=user))",
 hashMap);
out.println("** list.size -- " + list.size());

Snippet of invoke usage on a Active Directory II

ACC = source{"accountName"};
la = dispatcherService.invoke("AD soffid.pat", "(&(objectClass=user)(sAMAccountName=userName))", new
java.util.HashMap());

Authoritative change object

Attribute Type Description

id Long user id

accountId Long account id

accountName String account name

system String managed system (agent) name

accountDescription String account description

active Boolean true if user is active

accountDisabled Boolean true if account is diabled

mailAlias String blank separated mails

userName String user name

primaryGroup String user's primary group name

comments String user's comments

createdOn Date user creation date

modifiedOn Date user last modification date

mailDomain Date user mail domain (email right side of
@)

fullName String user full name

shortName String user mail name (email left side of @)

firstName String user first name

lastName String user last name

lastName2 String user second last name (when
applicable)

mailServer String mail server host name

homeServer String home drive server host name

profileServer String roaming profile server host name

Attribute Type Description

phone String user's phone number

userType String user type

createdBy String user name creator of this user

modifiedBy String user name modifier of this user

secondaryGroups List<Map<String,Object>> list of groups the user belongs to,
including primary group
The attributes of the inner map are
described in the link

secondariGroups2 List<Map<String,Object>> list of user memberships, excluding
primary group
The attributes of the inner map are
described link

attributes Map<String,String> additional user attributes

grantedRoles List<Map<String,Object>> list of grants directly granted to the
user

allGrantedRoles List<Map<String,Object>> list of grants directly on indirectly
granted to the user

granted List<String> list of role names and group names
directly granted to the user

allGranted List<String> list of role names and group names
directly or indirectly granted to the
user

https://confluence.soffid.com/display/SOF/group+object
https://confluence.soffid.com/display/SOF/membership+object
https://confluence.soffid.com/display/SOF/grant+object
https://confluence.soffid.com/display/SOF/grant+object

1. Agent scripts
User full name
Create mainDomain if it doesn't exit
Recover active agents
Show by a user the agents that have associates

2. Identity scripts
Recover a user for userName
Recover a users from a Jquery
Print some attributes
Print by user the email
Print by user some additional data
Create a new identity
Update an identity
Delete an identity

3. Account scripts
Recover accounts of user
Remove attribute values of a metadata

4. Role scripts

Sample scripts

Note that Soffid supports different scripting languages, you can configure it in the Smart
engine settings screen.

Additionally, in the initial configuration of the container, we can configure the
SOFFID_TRUSTED_SCRIPTS environment variable to allow the use of insecure classes. You
can find this information visiting the Installing IAM Console page.

Table of contents

https://bookstack.soffid.com/books/soffid-3-reference-guide/page/smart-engine-settings
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/smart-engine-settings
https://bookstack.soffid.com/link/27#bkmrk-4.-installation

Recover roles of a user
Print the associated roles for each account
Print for an account the roles and applications for each of them
Print the roles associated with each account
Create a new role
Update a role
Delete a role
List the roles of an application

5. Mail scripts
Send email

1. Agent scripts
User full name

return firstName + lastName;

Create mainDomain if it doesn't exit
String mailDomain = null;
if (email != void && email != null && email.contains("@")) {
 String[] mailTokens = email.split("@");
 mailDomain = mailTokens[1];
}
com.soffid.iam.service.MailListsService service = com.soffid.iam.ServiceLocator.instance().getMailListsService();
com.soffid.iam.api.MailDomain domain = service.findMailDomainByName(mailDomain);
if (domain==null) {
 domain = new com.soffid.iam.api.MailDomain();
 domain.setCode(mailDomain);
 domain.setDescription(mailDomain);
 domain.setObsolete(new Boolean(false));
 domain = service.create(domain);
}
return mailDomain;

Recover active agents
llistaAgents = serviceLocator.getDispatcherService().findAllActiveDispatchers();
for(agent:llistaAgents) {
 out.println("Nom: " + agent.name);
 out.println("Class Name: " + agent.className + "\n");
}

Show by a user the agents that have associates
llistaUsuaris = serviceLocator.getUserService().findUserByJsonQuery("userName eq \"Ivan\" ");
for(usuari:llistaUsuaris) {
 out.println("Usuario: " + usuari.userName);

 llisstacuentas = serviceLocator.getAccountService().findAccountByJsonQuery("users.user.userName eq
\""+usuari.userName+"\" ");

 for(cuenta:llisstacuentas){
 out.print(" Cuenta : " + cuenta.name);
 out.println(" ID: " + cuenta.id);
 llistaRole = serviceLocator.getApplicationService().findRoleAccountByAccount(cuenta.id);

 for(role:llistaRole){
 out.print(" Role: " + role.roleName + "\n");
 out.println(" Aplicacion: " + role.informationSystemName);
 out.println(" Agente: " + role.system);
 }
 }
}

2. Identity scripts
Recover a user for userName

u = serviceLocator.getUserService().findUserByUserName("Ivan");
out.print("Usuari: " + u.firstName);

Recover a users from a Jquery
llistaUsuari = serviceLocator.getUserService().findUserByJsonQuery("firstName sw \"A\" AND lastName sw \"V\"
");
for (usuari:llistaUsuari){
 out.println("Usuari: " + usuari.userName);
}

Print some attributes
u = serviceLocator.getUserService().findUserByUserName("02");
out.println("UserName: " + u.userName);
out.println("Name: " + u.firstName);
out.println("LastName: " + u.lastName);

Print by user the email
u = serviceLocator.getUserService().findUserByUserName("02");
out.print("Email: " + u.shortName + "@" + u.mailDomain);

Print by user some additional data
llistaDadesUsuari = serviceLocator.getUserService().findUserDataByUserName("18008366X");
for(dadaUsuari:llistaDadesUsuari){
 out.println("Atributs " + dadaUsuari.attribute + " = " + dadaUsuari.value);
}

Create a new identity
 try {
 newUser = new com.soffid.iam.api.User();
//Instanciar un nuevo objeto de tipo usuario

 newUser.userName = "IvanVis"; //Faltan 6 parametres
 newUser.firstName = "Ivannn";
 newUser.lastName = "Visarttt";
 newUser.userType = "I";
 newUser.profileServer = "null" ;
 newUser.homeServer = "null" ;
 newUser.mailServer = "null" ;

 newUser.primaryGroup = "world";
 newUser.active = true;

 serviceLocator.getUserService().create(newUser);
}catch(Exception e){
 e.printStackTrace(out);
}

Update an identity
u = serviceLocator.getUserService().findUserByUserName("Ivan");
u.firstName = "Ivaaan1";
u = serviceLocator.getUserService().update(u);
out.print(u.firstName);
out.print(u.userName);

Delete an identity
try {
 u = serviceLocator.getUserService().findUserByUserName("02");
 serviceLocator.getUserService().delete(u);
} catch(Exception e) {
 e.printStackTrace(out);
}

3. Account scripts
Recover accounts of user

la = serviceLocator.getAccountService().findAccountByJsonQuery("users.user.userName eq \"02\" ");
for(a:la) {
 out.println("Cuenta: " + a.name);
 out.println("ID: " + a.id);
 out.println("System: " + a.system + "\n");
}

Remove attribute values of a metadata

public void removeUnAttributeValues(String attribute, String system) {
 la = serviceLocator.getAccountService().findAccountByJsonQuery("system eq \""+system+"\"");
 for (a : la) {
 laa = serviceLocator.getAccountService().getAccountAttributes(a);
 for (aa : laa) {
 if (aa.attribute.equals(attribute)) {
 if (aa.value!=null) {
 out.print("accountName: "+accountName+", attribute.value: "+aa.value);
 serviceLocator.getAccountService().removeAccountAttribute(aa);
 out.println(" ---> removed");
 }
 }
 }
 }
}
removeUnAttributeValues("manager","OSCM");

4. Role scripts
Recover roles of a user

user = serviceLocator.getUserService().findUserByUserName("Ivan");
out.println("Usuari: " + user.userName + "\n");
rolsUser = serviceLocator.getUserService().findUserRolesHierachyByUserName(user.userName);
for(listrRolsUser:rolsUser){
 out.println("Nombre: " + listrRolsUser.name);
 out.println("Descripcion: " + listrRolsUser.description);
 out.println();
}

Print the associated roles for each account
llistaUsuaris = serviceLocator.getUserService().findUserByJsonQuery("userName eq \"Ivan\" ");
for(usuari:llistaUsuaris){

 llisstacuentas = serviceLocator.getAccountService().findAccountByJsonQuery("users.user.userName eq
\""+usuari.userName+"\" ");

 for(cuenta:llisstacuentas){
 out.print(" Cuenta : " + cuenta.name);
 llistaRole = serviceLocator.getApplicationService().findRoleAccountByAccount(cuenta.id);

 for(role:llistaRole){
 out.print(" Role: " + role.roleName + "\n");
 }
 }
}

Print for an account the roles and applications for each of
them

llistaUsuaris = serviceLocator.getUserService().findUserByJsonQuery("userName eq \"Ivan\" ");
for(usuari:llistaUsuaris){

 llisstacuentas = serviceLocator.getAccountService().findAccountByJsonQuery("users.user.userName eq
\""+usuari.userName+"\" ");

 for(cuenta:llisstacuentas){
 out.print(" Cuenta : " + cuenta.name);
 out.println(" ID: " + cuenta.id);
 llistaRole = serviceLocator.getApplicationService().findRoleAccountByAccount(cuenta.id);

 for(role:llistaRole){
 out.print(" Role: " + role.roleName + "\n");
 out.println(" Aplicacion: " + role.informationSystemName);
 }
 }
}

Print the roles associated with each account
usuCuenta = serviceLocator.getUserService().findUserByJsonQuery("");
for(listaUsuCuenta:usuCuenta) {

 out.println("Usuario: " + listaUsuCuenta.userName);
 out.println("Nombre: " + listaUsuCuenta.firstName);

 rolsUser = serviceLocator.getUserService().findUserRolesHierachyByUserName(listaUsuCuenta.userName);

 for(listaRolsUser:rolsUser){
 out.println("Nombre del Rol: " + listaRolsUser.name);
 out.println("Descripcion: " + listaRolsUser.description);
 out.println();
 }
 }
}

Create a new role
try {
 newRol = new com.soffid.iam.api.Role();
 newRol.name = "Rol_New_Script";
 newRol.description = "Rol Script";
 newRol.informationSystemName = "SOFFID";
 newRol.system = "APLICACION01";
 serviceLocator.getApplicationService().create(newRol);

} catch(Exception e){
 e.printStackTrace(out);
}

Update a role
editRole = serviceLocator.getApplicationService().findRoleByJsonQuery("name eq \"Rol editado por script\" and
informationSystemName eq \"APLICACION01\" ");
for (role:editRole){

 out.println(role.name);
 role.name = "ROL01";

 role = serviceLocator.getApplicationService().update(role);
 out.print(role.name);
}

Delete a role

try {
 editRole = serviceLocator.getApplicationService().findRoleById(232734);
 serviceLocator.getApplicationService().delete(editRole);
} catch(Exception e){
 e.printStackTrace(out);
}

List the roles of an application
list = serviceLocator.getApplicationService().findRoleByJsonQuery("informationSystemName eq \"SOFFID\"");
for (role : list) {
 out.println(role.name);
}

5. Mail scripts
Send email

import javax.mail.BodyPart;
import javax.mail.internet.MimeBodyPart;
import javax.activation.DataHandler;
import javax.activation.FileDataSource;
import java.util.ArrayList;
path = "/tmp/";
name = "file.txt";
BodyPart att = new MimeBodyPart();
att.setDataHandler(new DataHandler(new FileDataSource(path+name)));
att.setFileName(name);
to = "aretha@soffid.com";
cc = "etaylor@soffid.com";
subject = "This is an email with attachment ";
body = "In this email you can see an attachment.";
mimeBodyParts = new ArrayList();
mimeBodyParts.add(att);

serviceLocator.getMailService().sendHtmlMail(to, subject, body, mimeBodyParts);
serviceLocator.getMailService().sendHtmlMail(to, cc, subject, body, mimeBodyParts);

serviceLocator.getMailService().sendTextMailToActors(new String[]{"aretha"}, subject, body, mimeBodyParts);
serviceLocator.getMailService().sendTextMailToActors(new String[]{"aretha"}, cc, subject, body,
mimeBodyParts);
out.println("Mails sent!");

Crypt allows to encrypt text with different algorithms and verify the resulting hash.

To use this class: com.soffid.iam.crypt.Crypt

All methods are static:

The algorithms allowed are:

bcrypt
pBKDF2Sha256
pBKDF2Sha1 (or pBKDF2)
Base64 (used by default is the algorithm is not in the previous list)

One example:

Utility classes
Crypt

hash(String algorithm, String text) -> String
pBKDF2Sha256(String text, String utf8Salt, int iterations) -> String
pBKDF2Sha256(String text, byte []salt, int iterations) -> String
pBKDF2Sha1(String text, String utf8Salt, int iterations) -> String
pBKDF2Sha1(String text, byte []salt, int iterations) -> String
genSaltBytes() -> byte[] // 8 bytes
genSaltBytes(int size) -> byte[]
genSalt() -> String // 8 bytes
genSalt(int size) -> String
verify(String algorithm, String text, String hash) -> boolean

String myText = "abcd";
String myAlgorithm = "bcrypt";
String myHash = com.soffid.iam.crypt.Crypt.hash(myAlgorithm, myText);
boolean isVerified = com.soffid.iam.crypt.Crypt.verify(myAlgorithm, myText, myHash);
if (isVerified) {
 return myHash;
} else {

CalendarConverter allows to covert Calendar into String.

To use this class: com.soffid.iam.json.CalendarConverter

The methods (non static):

One example:

 return null;
}

CalendarConverter

toString(Calendar instance) -> String
fromString(final String text) -> Calendar

out.println(new com.soffid.iam.json.CalendarConverter().toString(date));

The Network discovery tool will be in charge to scan the networks to find the hosts and retrieve
information about user accounts. Network discovery can detect system accounts as well.

First of all, you need to create the networks that you want to scan. Visit the Networks page for
more information. Then, on the Network discovery page, you need to configure for each network,
the accounts and passwords of potential administrators to connect to the host and retrieve the
information. And finally, you need to start the process execution or you can schedule the execution
of the network discovery task.

The operating system of machines can be Windows or Linux and it is not necessary to install any
additional software on those machines.

https://www.youtube.com/embed/pXtYazC80Vs?rel=0

Network discovery
Description

When the Network discovery process is finished, it is recommended to launch the
Reconciliation process of the agents created by the process to detect the Account
protected services. To know how to run the Renconciliation process you can visit the
Agents page.

Once the machines and accounts, both user and system, have been discovered, the critical
accounts must be located in the password vault. You can visit the Password vault page for
more information.

Screen overview

Standard attributes

https://bookstack.soffid.com/books/soffid-3-reference-guide/page/networks
https://www.youtube.com/embed/pXtYazC80Vs?rel=0
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/agents
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/agents
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/password-vault

Those attributes are readOnly, you can update them on the Networks page.

Name: network name.
Description: a brief description.
IP Address: IP range of this network.
IP address mask: IP mask of this network.
IP ranges to analyze: allows you to set the range of IPs to scan

�� Image

Server: list of available sync servers.

Accounts to probe: list of potential administrators accounts to connect to the hosts. You
can register a new account or use an existing account.

Register new account: you need to define the login name and the password of the
new account.

Login name
Password
SSH key

Network attributes
Basic

Server

Accounts to probe

https://bookstack.soffid.com/books/soffid-3-reference-guide/page/networks
https://bookstack.soffid.com/uploads/images/gallery/2024-01/image-1705573373643.png

�� Image

Use an existing account: you need to select an existing account on the system.

�� Image

When you register a new account, that will be created as an unmanaged account.

Enabled: if it is selected (value is Yes), a task will be created and performed on schedule
defined.
Task description: a brief description of the task
Month: number of the month (1-12) when the task will be performed.
Day: number of the day (1-31) when the task will be performed.
Hour: hour (0-23) when the task will be performed.
Minute: minute (0-59) when the task will be performed.
Day of week: number of the day (0-7 where 0 means Sunday) of the week when the task
will be performed.

Schedule

https://bookstack.soffid.com/uploads/images/gallery/2024-06/image-1717596387528.png
https://bookstack.soffid.com/uploads/images/gallery/2024-06/image-1717596556925.png

Server: you must select the sync server where the agent will be run.

For each value of month, day, hour, minute, or day of the week:

* means any month, day, hour, minute, or day of the week. e.g. */5 to schedule every five
minutes.
A single number specifies that unit value: 3
Some comma separated numbers: 1,3,5,7
A range of values: 1-5

Start now: this allows you to launch the task execution.

Status: The available status for a task is:
Done (green light): task finished.
Pending (yellow light): the task has been started but it has not finished yet.
Error (red light): task could not be executed.

Start date: start date and time of the last execution.
End date: end date and time of the last execution.
Execution log: log trace. Allows you to download the log file.

List the information about the previous executions:

Start date: start date and time of the execution.
Status: status of the execution.
Execution: log of the execution. Allows you to download the log file.

By clicking the machine record, you can check the following information:

Name
IP Address
Description
Operating system
Port /Protocol List:

Port
Description

Current execution

Last execution

Previous executions

Machine attributes

�� Image

If you display the contents of a machine from which the information has been obtained, you could
check and manage information about:

Protected services per account
Account repositories
Entry points

�� Image

Machine details

It may be necessary to perform the Reconciliation process of the proper agent in order
to obtain the information from the Account protected services

https://bookstack.soffid.com/uploads/images/gallery/2024-01/image-1705661256378.png
https://bookstack.soffid.com/uploads/images/gallery/2024-11/8Av8doZFXuSr6a3W-image.png

Add new account repository Allows you to create a new agent.
You must select the System type and the login name and
password. When the agent is created, if the connection is
successful, the reconciliation process will be executed.

�� Image

Agent definition Allows you to browse to the agent definition.

Accounts Allows you to browse the accounts page and the accounts,
which belong to this system, will be displayed

Add new entry point Allows you to create a new entry point.
You must select the Entry point type and the pale to locate
it. Once the entry point is created, you can connect to the
target system. Bear in mind, that if you need to create an
account to connect, when you set the password to this
account, the system (agent) must be in No ReadOnly
mode.

�� Image

Entry point definition Allows you to browse to the entry point definition.

Apply changes Allows you to save the data of network detail. To save the
data it will be mandatory to fill in the required fields.

Undo Allows you to undo any changes made.

Actions
Network discovery query

Network discovery detail

Accounts to probe

https://bookstack.soffid.com/uploads/images/gallery/2023-12/image-1701426264500.png
https://bookstack.soffid.com/uploads/images/gallery/2023-12/image-1701426470540.png

Add Allows you to add a new administrator potential account to
connect to the machines of the network. To add a new
account, first of all, you need to click the add button (+)
and close the accounts to probe list. Then you will need to
choose if you want to add an existing account or register a
new account.

save the data of a new network or update the data of a
specific network. To save the data it will be mandatory to
fill in the required fields

Delete Allows you to delete one or more accounts of the accounts
to probe. You need to select one or more records and next
click the button with the subtraction symbol (-).

Start now Allows you to launch the task execution.

 Logs Allows you to download the log files of previous
executions.

 Delete Allows you to delete the machine and the PAM connectors
for the device. Soffid will display a message to confirm the
deletion process.

Schedule

Previous execution

Machine

