Database
Initialization

How to install and initialize database

Initialize database on your server

Initialize database using Docker

Initialize database on Kubernetes

Creating a multimaster MariaDB replica

Configuring database cluster

Initialize database on your
server

The purpose of this tutorial is to show how to initialize a database required for Soffid IAM
installation.

Prerequisites

First of all, you sould install a database required in the Soffid IAM installation.

The supported databases are:

MySQL

MariaDB
PostgreSQL

Oracle

Microsoft SqlServer

MySQL/MariaDB

In order to configure MySQL database you need access to the database administration tool (mysql)
with superuser permissions using a TCP/IP connection. If needed, please create a user for the Soffid
installation. If you don't have such a user, or don't know its password, please access MySQL as
root, execute the mysql tool and create the user with grant command (where ADMIN_USER is the
user to be used during the installation process to create the soffid repository database and

ADMIN PASSWORD is the required password).

create database soffid;
use soffid;

grant all privileges on *.* to ADMIN_USER@localhost identified by 'ADMIN_PASSWORD' with grant option;

In addition, in order to be able to manage big files, like process definitions or software add-ons, we
have to modify the max_allowed_packet parameter on MySQL. This parameter is commonly
located on the /etc/mysql/my.cnf file.

You can find thedefault option file locations on Linux, Unix, Mac or Windows following this

link.

[mysqld]
max_allowed_packet=128M

If the version of MariaDB is 10.1.38, or newer, the recommended value for
max_allowed packet is 512M

Note: in the case, we will obtain the next 'The size of BLOB/TEXT data inserted in one transaction is
greater than 10% of redo log size. Increase the redo log size using innodb log file size.' error when
trying to upload an addon, we may update the default value of this mysql/mariadb parameter. This
parameter is commonly allocated on the /etc/mysql/my.cnf file.

[mysaqld]
innodb_log_file_size=256M

If you are installing on a Ubuntu 18.04 server, the default character set is set to utf8mb4. Using
this character set can cause problems, as many index sizes will exceed the maximum key size of
767 bytes. To prevent this problem, change the following settings:

[mysqld]
character-set-server = Latinl
collation-server = Latinl_general_ci

Alternatively, if UTF character set is required, write the following settings:

[mysaqld]

character-set-server = utf8mb4
collation-server = utf8mb4_general_ci
innodb_large_prefix = 1
innodb_file_format = Barracuda

innodb_file_per_table = 1

Following this link you will find the steps to set up a two nodes database cluster.

Oracle

A new database instance should be created. Optionally two tablespaces should be created
(SOFFID_DATA and SOFFID_INDEX) to separate soffid tables and indexes.

https://mariadb.com/kb/en/configuring-mariadb-with-option-files/
https://mariadb.com/kb/en/configuring-mariadb-with-option-files/
https://bookstack.soffid.com/books/installation/page/creating-a-multimaster-mariadb-replica-2b4

CREATE TABLESPACE SOFFID_DATA DATAFILE '/app/oracle/oradata/project/soffid_data.dbf' SIZE 200M EXTENT
MANAGEMENT LOCAL AUTOALLOCATE

To create the tablespace is necessary to provide the full path name, its size and MANAGEMENT
AUTOALLOCATE option. The autoallocate option is needed because the tables are not sized by
database creation scripts. Also, the Oracle Listener must have a TCP/IP port accepting connections.

Microsoft SQLServer

You must enable the SQL Server Browser Service at startup and the authentication method have to
be set to “SQL Server and Windows Authentication mode”.

In addition, you must ensure that 'READ_COMMITTED_SNAPSHOT" parameter is enabled, you can
do so with the following command:

ALTER DATABASE [database_name] SET READ_COMMITTED_SNAPSHOT ON

Initialize database using
Docker

The purpose of this tutorial is to show how to initialize a database MariaDB required for
Soffid IAM installation using Docker.

Prerequisites

1. Install docker (https://docs.docker.com/install/)

2. Create a docker network, that network allows you to connect containers to the same bridge
network to communicate:

sudo docker network create -d bridge NETWORKNAME

For the correct installation of Soffid it is recommended not to use the underline character _
in the network name.

sudo docker exec -i -t
ID CONTAINER
/bin/bashMySQL/MariaDB

First step will be initialize MariaDB with Docker, in this case we attach the container to an exist
network:

sudo docker run -d --name mariadb-service --network=NETWORKNAME -e

"MYSQL_ROOT_PASSWORD=ADMIN_PASSWORD" mariadb

https://docs.docker.com/install/

Second, you can check the deployed containers:

sudo docker ps

Then, you must connect to the created container:

sudo docker exec -i -t mariadb-service /bin/bash

In order to configure MySQL database you need access to the database administration tool (mysql)
with superuser permissions using a TCP/IP connection. If needed, please create a user for the Soffid
installation. If you don't have such a user, or don't know its password, please access MySQL as
root, execute the mysql tool and create the user with grant command (where ADMIN_USER is the
user to be used during the installation process to create the soffid repository database and
ADMIN_PASSWORD is the required password).

Coonect to MySQL:

mysql -u root -p

Create database and grant permissions:

create database soffid;
use soffid;

grant all privileges on *.* to ADMIN_USER@'%' identified by 'ADMIN_PASSWORD' with grant option;

In addition, in order to be able to manage big files, like process definition or software addons, we
have to modify max_allowed_packet parameter on MySQL. This parameter is commonly allocated
on the /etc/mysql/my.cnf file.

[mysqld]
max_allowed_packet=128M

If the version of MariaDB is 10.1.38, or newer, the recommended value for
max_allowed_packet is 512M

Note: in the case we will obtain the next 'The size of BLOB/TEXT data inserted in one transaction is
greater than 10% of redo log size. Increase the redo log size using innodb_log file_size." error
trying to upload an addon, we may update the default value of this mysql/mariadb parameter. This
parameter is commonly allocated on the /etc/mysql/my.cnf file.

[mysaqld]
innodb_log_file_size=256M

If you are installing on a Ubuntu 18.04 server, default character set is set to utf8mb4. Using this
character set can cause problems, as many index sizes will exceed maximum key size of 767
bytes. To prevent this problem, change following settings:

[mysqld]
character-set-server = Latinl
collation-server = Latinl_general_ci

Alternatively, if UTF character set is required, write the following settings:

[mysqld]

character-set-server = utf8mb4
collation-server = utf8mb4_general_ci
innodb_large_prefix = 1
innodb_file_format = Barracuda

innodb_file_per_table = 1

Following this link you will find the steps to setup a two nodes database cluster.

Video Tutorial

MariaDB initialization using Docker

https://www.youtube.com/embed/mDJeSRbrn7w

https://confluence.soffid.com/display/SOF/Soffid+3%3A+Creating+a+multi-master+MariaDB+cluster
https://www.youtube.com/embed/mDJeSRbrn7w

Initialize database on
Kubernetes

The purpose of this tutorial is to show how to initialize a MariaDB database required for
Soffid IAM installation on Kubernetes.

MySQL/MariaDB

To initialize MariaDB on Kubernetes first of all you must create a Persistent Volume. Storage in the
cluster will be provisioned using Storage Classes.

apiVersion: v1
kind: PersistentVolume
metadata:
name: local-pv3
spec:
capacity:
storage: 10Gi
accessModes:
- ReadWriteOnce
persistentVolumeReclaimPolicy: Retain
storageClassName: local-storage
local:
path: /home/ulocal/kubernetes-disk3
nodeAffinity:
required:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:

- soffid123

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: mariadb-claim3
spec:
storageClassName: local-storage
accessModes:
- ReadWriteOnce
resources:
requests:

storage: 5Gi

Path "/home/ulocal/kubernetes-disk3" must be exists.

Then you must define the MariaDB deployment:

apiVersion: apps/vl
kind: Deployment
metadata:
name: mariadb3
labels:
app: soffid
instance: "Soffid-3"
type: database
spec:
strategy:
rollingUpdate:
maxSurge: 0
maxUnavailable: 1
type: RollingUpdate
replicas: 1
selector:
matchLabels:
app: soffid
instance: "Soffid-3"
type: database
template:
metadata:

labels:

app: soffid
instance: "Soffid-3"
type: database
spec:
restartPolicy: Always
containers:
- name: mariadb3
image: mariadb
resources:
limits:
memory: 2Gi
requests:
memory: 400Mi
args:
- "--max-allowed-packet=175M"
- "--innodb-log-file-size=256M"

"--character-set-server=utf8"

"--collation-server=utf8_bin"

"--net-read-timeout=3600"
- "--net-write-timeout=3600"
- "--innodb-buffer-pool-size=100M"

ports:

- containerPort: 3306
name: db-port

env:

- name: MYSQL ROOT PASSWORD
valueFrom:
secretKeyRef:
name: mariadb
key: root_password
- name: MYSQL_USER
valueFrom:
secretKeyRef:
name: mariadb
key: username
- name: MYSQL_PASSWORD
valueFrom:
secretKeyRef:
name: mariadb

key: password

- name: MYSQL_DATABASE
value: soffid
volumeMounts:
- name: mysql-persistent-storage3

mountPath: /var/lib/mysql

volumes:
- name: mysql-persistent-storage3
persistentVolumeClaim:
claimName: mariadb-claim3
apiVersion: v1
kind: Service
metadata:
name: mariadb3-service
namespace: default
spec:
clusterIP: None
ports:
- name: mariadb
port: 3306
protocol: TCP
targetPort: 3306
selector:
app: soffid
instance: "Soffid-3"
type: database
type: ClusterlP

Finally you must create resources in a cluster:

kubectl apply -f mariadb-pv-file.yaml
kubectl apply -f mariadb-deployment-file.yaml

Video Tutorial

MariaDB initialization in Kubernetes

https://www.youtube.com/embed/ F6p8]lurXs?rel=0

https://www.youtube.com/embed/_F6p8JlurXs?rel=0

Creating a multimaster

MariaDB replica

This topic will cover the process to create a two node Maria DB cluster. The cluster will be
configured to allow Soffid console to use either database node, which in turn will replicate data

changes to the other one.

Node 1 action

Create and setup a Maria DB in node 1.

Configure Maria DB to generate binary log files. Add the
following lines to /etc/mysql/my.cnf:

server-id = 1

log-bin

binlog-format=row

expire_logs_days = 15

max_binlog_size = 1000M

replicate-ignore-table = soffid. SC_SEQUENCE

slave-skip-errors = 1032,1053,1062

Restart MariaDB:

service mysql restart

Node 2 action

Create and setup a Maria DB in node 2.

Configure Maria DB to generate binary log files. Add the
following lines to /etc/mysql/my.conf:

server-id = 2

log-bin

binlog-format=row

expire_logs_days = 15

max_binlog_size = 1000M
replicate-ignore-table = soffid.SC_SEQUENCE
slave-skip-errors = 1032,1053,1062

Node 1 action

Dump current database contents:
mysqldump soffid -u soffid -p >soffid.data

Create a user for node 2 to fetch data from node 1. From
mysql, execute:
grant replication slave on *.* to replication user@
<NODE2-IP>

set password for replication user@1<NODE2-IP> =
password('<NODE2-PASS>')

Query current binary log position:
MariaDB [(none)]> show master status;

The result should look like this:

File Position Binlog_Do_ Binlog_Ilgn
DB ore_DB
mysqld- 68175
bin.000030

The got values will be used on node 2 to start replica
process.

Node 2 action

Restart MariaDB:

service mysql restart

Load current database contents
mysql -u soffid -p < soffid.data

Create a user for node 1 to fetch data from node 2. From
mysql, execute:
grant replication slave on *.* to replication user@
<NODE1-IP>

set password for replication user@1<NODE1-IP> =
password('*<NODE1-PASS>"')

mailto:replication_user@logpmgid02v.toolfactory.net
mailto:replication_user@192.168.2.171
mailto:replication_user@logpmgid02v.toolfactory.net
mailto:replication_user@192.168.2.171

Node 1 action

Now, start replication from node 2 to node 1. From mysql,

execute the following sentence, replacing proper values:
CHANGE MASTER TO
MASTER_HOST='<NODE2-IP>',
MASTER_USER='replication_user',
MASTER_PASSWORD='<NODE1-PASS>',
MASTER_PORT=3306,
MASTER_LOG_FILE='<NODE2-FILE>', /** i.e. mysql-
bin.000060 **/
MASTER_LOG_POS=<NODE2-POSITION>, /** j.e.
98325 *¥/
MASTER_CONNECT_RETRY=10;

Node 2 action

Start replication from node 1 to node 2. From mysql,

execute the following sentence, replacing proper values:
CHANGE MASTER TO
MASTER_HOST='<NODE1-IP>',
MASTER_USER='replication_user',
MASTER_PASSWORD='<NODE2-PASS>",
MASTER_PORT=3306,
MASTER_LOG_FILE='<NODEI1-FILE>", /** i.e. mysql-
bin.000030 **/
MASTER_LOG_POS=<NODE1-POSITION>, /** |.e.
68175 **/
MASTER_CONNECT_RETRY=10;

Verify replica is working right, by executing
SHOW SLAVE STATUS \G

Check following lines:
Slave_IO_Running: Yes
Slave_SQL_Running: Yes
Seconds_Behind_Master: 0

Query current binary log position:
MariaDB [(none)]> show master status;

The result should look like this:

File Position Binlog_Do_D Binlog_Ignor
B e_DB
mysqld- 98325
bin.000060

The got values will be used on node 1 to start replica
process.

Node 1 action Node 2 action

Verify replica is working right, by executing
SHOW SLAVE STATUS \G

Check following lines:
Slave_I0_Running: Yes
Slave_SQL _Running: Yes
Seconds_Behind_Master: 0

Now, create and start SC_SEQUENCE table in node 1. This
sequence will generate values 1, 11, 21, 31, 41, and so on:
CREATE TABLE "SC_SEQUENCE" (
"SEQ_NEXT" bigint(20) NOT NULL,
"SEQ_CACHE" bigint(20) NOT NULL,
"SEQ_INCREMENT" bigint(20) NOT NULL
),.

INSERT INTO SC_SEQUENCE VALUES (1, 100, 10);

Now, create and start SC_SEQUENCE table in node 2. This
sequence will generate values 2, 12, 22, 32, 42, and so
on::

CREATE TABLE "SC_SEQUENCE" (

"SEQ_NEXT" bigint(20) NOT NULL,

'SEQ_CACHE" bigint(20) NOT NULL,

'SEQ_INCREMENT " bigint(20) NOT NULL

)

INSERT INTO SC_SEQUENCE VALUES (2, 100, 10);

Now, configure the Console to use the following jdbc URL:

jdbc:mariadb:sequential://mariadb-host-1,mariadb-host-2/soffid

Configuring database cluster

Once the database replica is setup, it's important to guarantee transactianality rules. To achive it,
one database instance must be acting as the master and other as the slave.

Using corosync and pacemaker, you can configure a floating IP address that will mark which one is
the active one at each moment.

Node 1 Node 2

Install Corosync and Pacemaker. It is recommended to use Install Corosync and Pacemaker.
apt or yum because these programs will handle
dependencies for you, making the process much easier.

Cluster nodes need a key in order to authenticate the
packages sent between them by corosync.

sudo corosync-keygen

Once the key has been generated, copy it to the other
nodes:

sudo scp /etc/corosync/authkey <user>@<other-cluster-
node>:/home/<user>

Once the key has been copied, move the copied key from
the /home/<user> route to /etc/corosync/authkey

Now we need to tell Corosync which IP to use to
communicate with other nodes in the cluster.

Open /etc/corosync/corosync.conf and edit the bindnetaddr
field. Set the right IP and save the file.

We need to do this in every node in the cluster, although
you can use the same file if you set the right name in your
hosts file.

Configure Corosync with the right IP binding as done in
node 1.

Configure the /etc/default/corosync file to enable Corosync
changing START to yes "START=yes".

Then we can start Corosync using sudo service corosync
start.

Enable Corosync and start it as in node 1.

Node 1

Allow the nodes a few seconds to start, then you can
monitor the cluster nodes using sudo crm_mon. The result
should be similar to this:

Last updated: Mon Mar 31 14:05:23 2015
Stack: corosync

Current DC: yourDC - partition with quorum
Version: 1.x.x-yourversion

2 Nodes configured, 2 expected votes

0 Resources configured.

Online: [nodel node2]

Corosync is ready, now we will tell Pacemaker which
resources we want it to handle in HA. These will be the
database and a virtual IP (VIP) we will use to address the
cluster.

Add the VIP to the node, and then use this to create the
resource:

sudo crm configure primitive FAILOVER-ADDR

ocf:heartbeat:IPaddr2 params ip="your.virtual.IP"

nic="your.network.device" op monitor interval="10s"
meta is-managed="true"

You can check the result using sudo crm status, which
should look something like:

Last updated: Wed Jan 18 10:21:12 2017 Last change: Tue
Jan 17 13:08:25 2017 by hacluster via crmd on nodename
Stack: corosync

Current DC: nodename(version 1.1.14-70404b0) - partition
with quorum

2 nodes and 2 resources configured

Online: [nodel nodeZ2]

Full list of resources:

Resource Group: my_cluster

FAILOVER-ADDR (ocf::heartbeat:IPaddr2): Started node2

Now we will add the database. We will use:
sudo crm configure primitive FAILOVER-MARIADB
Isb::mysql op monitor interval=15s

Node 2

Check the nodes with sudo crm_mon

http://ocfheartbeatipaddr2/

