
The Service Providers are standard applications that rely on Identity Providers to let the users log
in.

To join the federation, the service provider management team must deliver its "Metadata". The
service provider Metadata describes how the service providers behave:

Which security algorithms does it support.
The public portion of its signing and encrypting keys.
The SAML protocol does it support.
The URL of each SAML protocol endpoint.
Contact information.

The standard attributes depend on the Service provider type.

Identifier: public name of the service provider. It must be unique 
Name: friendly user name or brief description.

Metadata: you must provide the identity provider metadata. You can either copy it from
the Soffid Identity Provider page, or instruct the service provider to download the
federation metadata by itself.
NameID format: 

Service Provider

Definition

Join federation

Standard attributes

SAML

To enable External SAML protocol you can visit the Authentication page. Also, on that
page you could download the metadata XML file.

Identification

Service configuration

https://bookstack.soffid.com/link/164#bkmrk-external-saml-identi


Persistent
Email
Unspecified
Transient

To publish the federation members' metadata, the main sync server exports the member's
metadata at the path /SAML/metadata.xml. Thus, if your sync server is listening at
soffid1.your.domain, you can get the whole federation metadata document from:

After some seconds, up to five minutes, every federation member will notice any change.

Allow impersonations: Soffid allows a service provider to connect to another service
provider in a controlled manner. Here you can write the target application URL. 
UID Script: script to compute the user name to pass to the target application
Ask for consent
Roles required to login: roles that the user must have to be able to connect to the
system
System where an enabled account is required: System where it will be necessary for
the user to have an account in order to log in.

�� Image

https://soffid1.your.domain:760/SAML/metadata.xml

Login rules

https://bookstack.soffid.com/uploads/images/gallery/2024-06/image-1718031321737.png
https://soffid1.your.domain:760/SAML/metadata.xml


Identifier: public name of the service provider. It must be unique 
Name: friendly user name or brief description.
Organization: company name of the external IdP.
Contact: email address of the external IdP.

Metadata
NameID format: 

Persistent
Email
Unspecified
Transient

Leave it blank as Soffid IdP will fulfill it for you.

Allow impersonations: Soffid allows a service provider to connect to another service
provider in a controlled manner. Here you can write the target application URL. 
UID Script: script to compute the user name to pass to the target application.
Ask for consent

Host name: public application host name that wants to be a service provider. A fully
qualified name should be used.
Standard port: public application port number. 
Disable SSL: check it, selected value Yes, if you want to use plain TCP connections. In
another case, it will be needed to comply with additional fields:
Assertion path: URL to receive the response.

You can visit theOpenid-connect to SAML interoperability page for more detailed information.

SAML API client
Identification

Service configuration

The metadata will be created when the network data and SAML Security data.

Login rules

You can visit the Openid-connect to SAML interoperability page for more detailed
information.

Network

https://bookstack.soffid.com/books/federation/page/openid-connect-to-saml-interoperability
https://bookstack.soffid.com/books/federation/page/openid-connect-to-saml-interoperability


PublicKey:   
Clicking on the Generates public / private key button, a new private key pair will
be generated. Once the private key pair is generated, you could generate a
certificate request file, also known as PKC#10 or CSR file. The certificate authority
will be able to create a certificate for you using this certificate request. Once you
have created the public/private key, you could run other new functions:

Change public/private key: this allows you to change the public/private key
generated previously.
Delete public/private key: this allows you to delete the public/private key
generated previously.
Generate PKCS10: generates a PKCS10 file (Certification request standard).

Clicking on the Upload PKCS12 file button it will be able to upload a PKCS#12 file.
That file must contain the private and public keys and the server certificate as well.
Mind that PKCS#12 file use to be protected by a PIN.

Certificate chain: text certificate chain created with one of the previous options.

�� Image

SAML Security

OpenID Connect
Identification

https://bookstack.soffid.com/uploads/images/gallery/2024-06/image-1718031233232.png


Identifier: public name of the service provider. It must be unique.
Name: friendly user name or brief description.

Allow impersonations: Soffid allows a service provider to connect to another service
provider in a controlled manner. Here you can write the target application URL. 
UID Script: script to compute the user name to pass to the target application.
Ask for consent
Roles required to login: roles that the user must have to be able to connect to the
system
System where an enabled account is required: System where it will be necessary for
the user to have an account in order to log in.

Implicit: application server redirects the end user to the IdP, that in turn, returns the
oAuth token along with the OpenID token.
Authorization code: application server redirects the user to the IdP, which in turn,
returns an authorization code that can be used to retrieve the token and the OpenID
token from the token endpoint.
User's password: the server access directly to the token endpoint, sending the
username and password, to retrieve the oAuth and OpenID token. This mechanism is
highly insecure, as allows unauthenticated clients to impersonate end users
User's password + Client credential: it is a secure version of the previous one,
requiring the client to use its client secret.
Client id: the identifier used by the application server.
Client secret: password used by the application server. It is used in the Authorization
code flow as well as “User’s password + Client credentials” flow.
Response URL: set the URL to return the control after authenticating a user.​
RP-Initiated logout response URL's
Front-channel logout endpoint
Back-channel logout endpoint
oAuth Session timeout (secs):  time in seconds that will take the oAuth session. The
oAuth has its own life cycle, regardless of the session timeout.
Allowed scopes: you can define a scope list with the proper scopes that users will need
to interact with the final system.

openid: default scope.
custom scopes: you can add the custom scopes that can be requested by the
service provider.

Login rules

You can visit the Openid-connect to SAML interoperability page for more detailed
information.

OpenID authorization flow

https://bookstack.soffid.com/books/federation/page/openid-connect-to-saml-interoperability


*: the scope * means that any scope requested by the service provider will be
granted.

�� Image

Identifier: public name of the service provider. It must be unique 
Name: friendly user name or brief description.

UID Script: script to compute the user name to pass to the target application.
Ask for consent
Roles required to login: roles that the user must have to be able to connect to the
system.
System where an enabled account is required: System where it will be necessary for
the user to have an account in order to log in.

Implicit: application server redirects the end user to the IdP, that in turn, returns the
oAuth token along with the OpenID token.

OpenID Connect Dynamic Registration
Identification

Login rules

OpenID authorization flow

https://bookstack.soffid.com/uploads/images/gallery/2024-06/image-1718031290130.png


Authorization code: application server redirects the user to the IdP, which in turn,
returns an authorization code that can be used to retrieve the token and the OpenID
token from the token endpoint.
User's password: the server access directly to the token endpoint, sending the
username and password, to retrieve the oAuth and OpenID token. This mechanism is
highly insecure, as allows unauthenticated clients to impersonate end users
User's password + Client credential: it is a secure version of the previous one,
requiring the client to use its client secret.
Sector identifier URI
Allowed scopes: you can define a scope list with the proper scopes that users will need
to interact with the final system.

openid: default scope.
custom scopes: you can add the custom scopes that can be requested by the
service provider.
*: the scope * means that any scope requested by the service provider will be
granted.

Token: unique identifier
Valid until: maximum validity date
Allowed servers: maximum number of servers that can be registered

�� Image

Registration token



Identifier: public name of the service provider. It must be unique.
Name: friendly user name or brief description.

Allow impersonations: Soffid allows a service provider to connect to another service
provider in a controlled manner. Here you can write the target application URL. 
UID Script: script to compute the user name to pass to the target application.
Ask for consent
Roles required to login: roles that the user must have to be able to connect to the
system
System where an enabled account is required: System where it will be necessary for
the user to have an account in order to log in.

Response URL 

Cas client
Identification

Login rules

CAS configuration

https://bookstack.soffid.com/uploads/images/gallery/2024-06/image-1718031155504.png


Logout response URL 

�� Image

Identifier: public name of the service provider. It must be unique.
Name: friendly user name or brief description.

UID Script: script to compute the user name to pass to the target application.
Roles required to login
System where an enabled account is required

Source IPs: origin IP or origin IP range.
Radius secret: password

�� Image

Radius client
Identification

Login rules

Radius configuration

https://bookstack.soffid.com/uploads/images/gallery/2024-06/image-1718031131014.png


Identifier: public name of the service provider. It must be unique.
Name: friendly user name or brief description.

Roles required to login
System where an enabled account is required

Source IPs:  origin IP or origin IP range.
Tacacs+ secret: password.
Authorization rules: allows you to add additional authorization rules to elevate
privileges. Available context variables:

user: remote user name
priv_level: privilege level
remote_address: remote address
port: port
optionalArguments: modifiable map of optional attributes.
mandatoryArguments: modifiable map of mandatory attributes.
return true if the action is authorized.

�� Image

TACACS+
Identification

Login rules

Tacacs+ configuration

https://bookstack.soffid.com/uploads/images/gallery/2024-06/image-1718031107168.png


https://www.rfc-editor.org/rfc/rfc8907.html

Identifier: public name of the service provider. It must be unique.
Name: friendly user name or brief description.

Allow impersonations: Soffid allows a service provider to connect to another service
provider in a controlled manner. Here you can write the target application URL. 
UID Script: script to compute the user name to pass to the target application.
Ask for consent
Roles required to login: roles that the user must have to be able to connect to the
system
System where an enabled account is required: System where it will be necessary for
the user to have an account in order to log in.

Response URL

�� Image

WS-Federation
Identification

Login rules

WS-Federation

https://bookstack.soffid.com/uploads/images/gallery/2024-06/image-1718031084991.png
https://www.rfc-editor.org/rfc/rfc8907.html


 

Revision #55
Created 8 September 2021 09:43:27 by pgarcia@soffid.com
Updated 10 June 2024 15:06:26 by pgarcia@soffid.com

https://bookstack.soffid.com/uploads/images/gallery/2024-06/image-1718031084991.png
https://bookstack.soffid.com/uploads/images/gallery/2024-06/image-1718031500088.png

