Connecting an OpenlD
Connect service

Introduction

There are three basic OpenlD flows, depending whether the service name must be authenticated
using its client secret or not:

OpenlD flow

[
Implicit flow

e The Service Provider sends the user to the IdP.

e The IdP authenticates the user.

e The user returns control to the Service Provider along an OpenlID token
and an OAuth token.

Client credentials flow

e The Service Provider sends the user to the IdP.

e The IdP authenticates the user.

e The user returns control to the Service Provider along an authorization
code.

e The Service Provider gets the OpenlID token and OAuth token from the
IdP by presenting the authorization code, and its client secret. This
request is using a direct connection between them.

Password authentication flow

e The Service Provider asks for a user name and password.
e The Service Provider gets the OpenID token and OAuth token from the
IdP by presenting the user's name and password, and optionally its

client secret. This request is using a direct connection between them.

Register an Openld Connect
Service Provider

1. To register an Openld Connect service provider, open the federation page:

Main Menu > Administration > Configuration > Web SSO > Identity & Service providers

2. Then, select an Entity Group and the branch Service Providers and click on the Add Service

Provider button.

IFilter

(© Federation
@ & MainGroup
© Identity Providers

Add identity provider

& Service Providers

Add Service Provider

Add group

3. Soffid will display the following window:

https://bookstack.soffid.com/uploads/images/gallery/2023-07/image-1689235669464.png

Type OpenlD Cannect ~| Allow impersonations
Identifier AngularppQpeniD
Name AngularAppOpeniD

compute the user name to pass to the target applicatior Vd

®

(o] ~]

http://localhost:4204

RP-Initiated logout response URL's

ondpoint
http:// offid pat.

Allowed scopes ‘]+ Scope name % Required roles
‘ [Fiicer WNFTer
o -email
O | openid
O | profile SOFFID_MUSIC@soffid

Displayed rows: 3

Note that the scaoe 'ooenid’ will alwavs be accented.

For more information about the attributes, you can visit the OpenlID Connect detailed info.

Finally, you must apply changes.

. a

Examples

1. Authorization code flow

The client application creates a random String, named nonce, and sends to the user the following
URL

Request

https://youridentityprovider:2443/authorization?
redirect_uri=https://<serviceprovider>/response&
client_id=MYCLIENT&
nonce=12345679801234567890&
scope=openid+test+other&
response_type=code

Then, the user will be asked for a username and password, or any other means of authentication.
After authenticating the user, the browser will be redirected to the URL configured in the service

https://bookstack.soffid.com/uploads/images/gallery/2023-07/image-1689236053673.png
https://soffid.bubu.lab:2443/token
https://bookstack.soffid.com/link/392#bkmrk-openid-connect

provider page, adding a one-time authorization code.

https://<serviceprovider>/response/?
code=XXXXXXXXXXXXXXX&
nonce=12345679801234567980

Once the service provider has received the one-time authorization code, it can connect to the
identity provider to retrieve the oAuth token, as well as the OpenlID token.

Request

POST https://youridentityprovider:2443/token

HEADERS

Accept: application/json

Authorization: Basic dGVzdDp0ZXNO
Content-Type: application/x-www-form-urlencoded

BODY PARAMS
grant_type=authorization_code&
code=XXXXXXXXXXXX

Parameters

o Authorization: contains, coded in base 64, the client id and the client secret, as it
would have been sent for a standard Basic authentication header. The identity provider
will match these against the stored credentials.

o grant_type: should be authorization_code.

e code: should be the one-time authorization code received in the previous requested.

Response

"access_token":"8bDP2P...",
"refresh_token":"gjLmSW...",
"id_token":"eyJra.ey).LQ_XtHKr.RY3A4...",
"token_type":"Bearer",
"expires_in":11998

e The id token tag contains the Openld token.
e The access_token tag contains the oAuth token.

Before the number of seconds specified om expires_in are elapsed, the token can be renewed by
invoking again the token endpoint changing the grant_type:

Request

https://soffid.bubu.lab:2443/token

POST https://youridentityprovider:2443/token

HEADERS

Accept: application/json

Authorization: Basic dGVzdDp0ZXNO
Content-Type: application/x-www-form-urlencoded

BODY PARAMS
grant_type=refresh_token&
refresh_token=gjLmSW...

Parameters

o Authorization: contains, coded in base 64, the client id and the client secret, as it
would have been sent for a standard Basic authentication header. The identity provider
will match these against the stored credentials.

o grant_type: should be refresh_token.

o refresh_code: should be refresh code received in the previous requested.

Response

{
"access_token":"8bDP2P...",

"refresh_token":"gjLmSW...",
"id_token":"eyJra.ey).LQ_XtHKr.RY3A4...",
"token_type":"Bearer",
"expires_in":11998

}

2. User’'s password + client credentials
flow

The application asks the user for the user name and password. Then, it connects to the token
endpoint to get an access token:

Request

https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/token

POST https://youridentityprovider:2443/token

HEADERS

Accept: application/json

Authorization: Basic dGVzdDp0ZXNO
Content-Type: application/x-www-form-urlencoded

BODY PARAMS

grant_type=password&
username=USER&
password=PASSWORD&XXXXXXXXXXXX

Parameters

e Authorization: contains, coded in base 64, the client id and the client secret, as it would
have been sent for a standard Basic authentication header. The identity provider will
match these against the stored credentials

e grant_type: should be password

e username: must be the user name entered by the user.

e password: must be the password entered by the user.

Response

"access_token":"8bDP2P...",
"refresh_token":"gjLmSW...",
"id_token":"eyJra.ey).LQ_XtHKr.RY3A4...",
"token_type":"Bearer",
"expires_in":11998

e The id_token tag contains the openid token.
e The access_token tag contains the oAuth token.

Before the number of seconds specified in expires_in are elapsed, the token can be renewed by
invoking again the token endpoint:

Request

POST https://youridentityprovider:2443/token

HEADERS

Accept: application/json

Authorization: Basic dGVzdDp0ZXNO
Content-Type: application/x-www-form-urlencoded

BODY PARAMS
grant_type=refresh_token&
refresh_token=gjLmSW...

https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/token

Parameters

e Authorization: contains, coded in base 64, the client id and the client secret, as it would
have been sent for a standard Basic authentication header. The identity provider will
match these against the stored credentials

o grant_type: should be refresh_token

e refresh_code: should be refresh code received in the previous requested

Response

{
"access_token":"8bDP2P...",

"refresh_token":"gjLmSW...",
"id_token":"eyJra.ey).LQ_XtHKr.RY3A4...",
"token_type":"Bearer",
"expires_in":11998

}

3. Closing the session

The application wants to revoke the token and session cookie:

Request

POST https://youridentityprovider:2443/revoke

HEADERS

Accept: application/json

Content-type: application/x-www-form-urlencoded
Authorization: Basic dGVzdDp0ZXNO

BODY PARAMS
token_type_hint=token=access_token&
token=8bDP2P...

Parameters

o Authorization: contains the encoded client id and client secret.
o token_type_hint: can have the following values:
o access_token
o refresh_token
o session_cookie
e token: contains the authorization token, refresh_token or session_cookie value

https://soffid.bubu.lab:2443/token

4. Getting user attributes

All the user attributes can be extracted from the OpenlID token. Anyway, it is possible to get them
in @ more readable format user the user-info endpoint.

Request

GET https://youridentityprovider:2443/userinfo

HEADERS
Accept: application/json
Authorization: Bearer dGVzdDp0ZXNO

Parameters

e Authorization: contains a valid access token.

Response

{

"sub": "admin",

"surname": "Admin",

"given_name": "Admin",

"member_of": [
"TestRole2@soffid",
"TestRole@soffid"

]

5. Getting a session cookie for the user

Sometimes, a mobile application has authenticated the user using the username & password grant,
but wants to share this authenticated session with the underlying web browser. For such a case,
the application can request a session cookie with this request:

Request

GET https://youridentityprovider:2443/session_cookie

HEADERS
Accept: application/json
Authorization: Bearer dGVzdDp0ZXNO

Parameters

https://soffid.bubu.lab:2443/session_cookie
https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/session_cookie
https://soffid.bubu.lab:2443/session_cookie
https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/session_cookie

e Authorization: contains a valid access token.

Response

"cookie_domain": "cookied",

"user": "pgarcia",

"cookie_value": "5458083_bT2CZlaabpsl/q3ue6NObxX8Q7duQKjohAuUjlouT5Y=",
"cookie_name": "cookien"

}
Please note that it is mandatory to fill in the name of the cookie in the identity provider, at
the session management section

Revision #47

Created 20 September 2021 15:23:03 by pgarcia@soffid.com
Updated 13 July 2023 08:44:49 by pgarcia@soffid.com

