
There are three basic OpenID flows, depending whether the service name must be authenticated
using its client secret or not:

Connecting an OpenID
Connect service

Introduction

OpenID flow

Implicit flow

The Service Provider sends the user to the IdP.
The IdP authenticates the user.
The user returns control to the Service Provider along an OpenID token
and an OAuth token.

Client credentials flow

The Service Provider sends the user to the IdP.
The IdP authenticates the user.
The user returns control to the Service Provider along an authorization
code.
The Service Provider gets the OpenID token and OAuth token from the
IdP by presenting the authorization code, and its client secret. This
request is using a direct connection between them.

Password authentication flow

The Service Provider asks for a user name and password.
The Service Provider gets the OpenID token and OAuth token from the
IdP by presenting the user's name and password, and optionally its

“



1. To register an OpenId Connect service provider, open the federation page:

Main Menu > Administration > Configuration > Web SSO > Identity & Service providers

2. Then, select an Entity Group and the branch Service Providers and click on the Add Service
Provider button.

3. Soffid will display the following window:

client secret. This request is using a direct connection between them.

Register an OpenId Connect
Service Provider

https://bookstack.soffid.com/uploads/images/gallery/2023-07/image-1689235669464.png


4. Finally, you must apply changes.

 

The client application creates a random String, named nonce, and sends to the user the following
URL

https://youridentityprovider:2443/authorization?
redirect_uri=https://<serviceprovider>/response&
client_id=MYCLIENT&
nonce=12345679801234567890&
scope=openid+test+other&
response_type=code

Then, the user will be asked for a username and password, or any other means of authentication.
After authenticating the user, the browser will be redirected to the URL configured in the service

For more information about the attributes, you can visit the OpenID Connect detailed info.

Examples
1. Authorization code flow

Request

https://bookstack.soffid.com/uploads/images/gallery/2023-07/image-1689236053673.png
https://soffid.bubu.lab:2443/token
https://bookstack.soffid.com/link/392#bkmrk-openid-connect


provider page, adding a one-time authorization code.

https://<serviceprovider>/response/?
code=XXXXXXXXXXXXXXX&
nonce=12345679801234567980

Once the service provider has received the one-time authorization code, it can connect to the
identity provider to retrieve the oAuth token, as well as the OpenID token.

POST https://youridentityprovider:2443/token

HEADERS
Accept: application/json
Authorization: Basic dGVzdDp0ZXN0
Content-Type: application/x-www-form-urlencoded

BODY PARAMS
grant_type=authorization_code&
code=XXXXXXXXXXXX

Authorization: contains, coded in base 64, the client id and the client secret, as it
would have been sent for a standard Basic authentication header. The identity provider
will match these against the stored credentials.
grant_type: should be authorization_code.
code: should be the one-time authorization code received in the previous requested.

{
    "access_token":"8bDP2P...",
    "refresh_token":"gjLmSW...",
    "id_token":"eyJra.eyJ.LQ_XtHKr.RY3A4...",
    "token_type":"Bearer",
    "expires_in":11998
}

The id_token  tag contains the OpenId token.
The access_token tag contains the oAuth token.

Before the number of seconds specified om expires_in are elapsed, the token can be renewed by
invoking again the token endpoint changing the grant_type:

Request

Parameters

Response

Request

https://soffid.bubu.lab:2443/token


POST https://youridentityprovider:2443/token

HEADERS
Accept: application/json
Authorization: Basic dGVzdDp0ZXN0
Content-Type: application/x-www-form-urlencoded

BODY PARAMS
grant_type=refresh_token&
refresh_token=gjLmSW...

Authorization: contains, coded in base 64, the client id and the client secret, as it
would have been sent for a standard Basic authentication header. The identity provider
will match these against the stored credentials.
grant_type: should be refresh_token.
refresh_code: should be refresh code received in the previous requested.

{
    "access_token":"8bDP2P...",
    "refresh_token":"gjLmSW...",
    "id_token":"eyJra.eyJ.LQ_XtHKr.RY3A4...",
    "token_type":"Bearer",
    "expires_in":11998
}

The application asks the user for the user name and password. Then, it connects to the token
endpoint to get an access token:

Parameters

Response

2. User’s password + client credentials
flow

Request

https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/token


POST https://youridentityprovider:2443/token

HEADERS
Accept: application/json
Authorization: Basic dGVzdDp0ZXN0
Content-Type: application/x-www-form-urlencoded

BODY PARAMS
grant_type=password&
username=USER&
password=PASSWORD&XXXXXXXXXXXX

Authorization: contains, coded in base 64, the client id and the client secret, as it would
have been sent for a standard Basic authentication header. The identity provider will
match these against the stored credentials
grant_type: should be password
username: must be the user name entered by the user.
password: must be the password entered by the user.

{
    "access_token":"8bDP2P...",
    "refresh_token":"gjLmSW...",
    "id_token":"eyJra.eyJ.LQ_XtHKr.RY3A4...",
    "token_type":"Bearer",
    "expires_in":11998
}

The id_token tag contains the openid token.
The access_token tag contains the oAuth token.

Before the number of seconds specified in expires_in are elapsed, the token can be renewed by
invoking again the token endpoint:

POST https://youridentityprovider:2443/token

HEADERS
Accept: application/json
Authorization: Basic dGVzdDp0ZXN0
Content-Type: application/x-www-form-urlencoded

BODY PARAMS
grant_type=refresh_token&
refresh_token=gjLmSW...

Parameters

Response

Request

https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/token


Authorization: contains, coded in base 64, the client id and the client secret, as it would
have been sent for a standard Basic authentication header. The identity provider will
match these against the stored credentials
grant_type: should be refresh_token
refresh_code: should be refresh code received in the previous requested

{
    "access_token":"8bDP2P...",
    "refresh_token":"gjLmSW...",
    "id_token":"eyJra.eyJ.LQ_XtHKr.RY3A4...",
    "token_type":"Bearer",
    "expires_in":11998
}

The application wants to revoke the token and session cookie:

POST https://youridentityprovider:2443/revoke

HEADERS
Accept: application/json
Content-type: application/x-www-form-urlencoded
Authorization: Basic dGVzdDp0ZXN0

BODY PARAMS
token_type_hint=token=access_token&
token=8bDP2P...

Authorization: contains the encoded client id and client secret.
token_type_hint: can have the following values:

access_token
refresh_token
session_cookie

token: contains the authorization token, refresh_token or session_cookie value

Parameters

Response

3. Closing the session

Request

Parameters

https://soffid.bubu.lab:2443/token


All the user attributes can be extracted from the OpenID token. Anyway, it is possible to get them
in a more readable format user the user-info endpoint.

GET https://youridentityprovider:2443/userinfo

HEADERS
Accept: application/json
Authorization: Bearer dGVzdDp0ZXN0

Authorization: contains a valid access token.

{
    "sub": "admin",
    "surname": "Admin",
    "given_name": "Admin",
    "member_of": [
        "TestRole2@soffid",
       "TestRole@soffid"
    ]
}

Sometimes, a mobile application has authenticated the user using the username & password grant,
but wants to share this authenticated session with the underlying web browser. For such a case,
the application can request a session cookie with this request:

GET https://youridentityprovider:2443/session_cookie

HEADERS
Accept: application/json
Authorization: Bearer dGVzdDp0ZXN0

4. Getting user attributes

Request

Parameters

Response

5. Getting a session cookie for the user

Request

Parameters

https://soffid.bubu.lab:2443/session_cookie
https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/session_cookie
https://soffid.bubu.lab:2443/session_cookie
https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/session_cookie


Authorization: contains a valid access token.

{
"cookie_domain": "cookied",
"user": "pgarcia",
"cookie_value": "5458083_bT2CZlaa6psl/q3ue6NObxX8Q7duQKj0hAuUJIouT5Y=",
"cookie_name": "cookien"

}

Response

Please note that it is mandatory to fill in the name of the cookie in the identity provider, at
the session management section

Revision #47
Created 20 September 2021 15:23:03 by pgarcia@soffid.com
Updated 13 July 2023 08:44:49 by pgarcia@soffid.com


