
OpenID-Connect
OpenID-Connect architecture
OpenID-Connect example

OpenID-Connect



It is identity layer on top of the OAuth 2.0 protocol. OpenID-Connect is based on most modern
protols. It uses JSON tokens, signed and optionally encripted using JWT standard, and uses simple
REST as its transport protocol.

Sometimes referred as OpenID, must not be confused with an older and deprecated standard
named OpenID.

https://openid.net/

https://en.wikipedia.org/wiki/OpenID#OpenID_Connect_(OIDC)

OpenID-Connect
Introduction

OpenID is an open standard and decentralized authentication protocol.  It allows
users to be authenticated by cooperating sites (known as relying parties, or RP)
using a third-party service, eliminating the need for webmasters to provide their
own ad hoc login systems, and allowing users to log into multiple unrelated
websites without having to have a separate identity and password for each.

“

https://bookstack.soffid.com/uploads/images/gallery/2021-09/1024px-openid-logo-2-svg.png
https://openid.net/
https://en.wikipedia.org/wiki/OpenID#OpenID_Connect_(OIDC)


OpenID is based on the well known protocol. It is easier to implement and deploy, as it does not
require digital signature or  encryption. The drawback is that it is significantly less secure. For
example, the single logout protocol is not finished yet.

The usual log-in process follows the next UML diagram:

OpenID-Connect architecture
Introduction

Single Log-in



1. User’s browser tries to get a web page from the service providers

2. . The service provider wants to authenticate the user identity. To get this, redirects the user to
the identity provider, including the returning URL.

3.  The authorization request is received by the identity provider. At this point, the identity
provider verifies it is issued by an authorized service provider.

Next, the identity providers checks if the user browser does have an active SSO session. In such a
case, skip to step 6.

4. The identity providers ask for credentials to the user.

Description



5.  The user enters its credentials. At this time, the identity provider verifies the user name and
password are correct, and creates a new SSO session.

6.  The identity provider redirects the user to the service provider, sending an authorization code.

7. The service provider connects to the identity provider, using its client id and client secret, as
well as the authorization code.

8. The identity provider verifies the authorization code and generates two tokens: the oAuth token
and the OpenID token. The  Auth token is a bare token that can be used by the service provider to
perform additional requests.

The Openid token contains some user attributes. The included attributes and its value can vary
depending on the service  provider that will receive it. This token can be signed using JWT
standard.

9. The service provider receives the both tokens, parsing the JSON document contained in the JWT
OpenID token.

One generic logout process diagram:

Single Log-out



1. The user requests to log out the application.

2. Logout in the Service Provider, for instance, delete cookies.

3. Redirect to the Identity Provider logout endpoint

4. Logout in the Identity Provider, for instance, delete cookies.

5. The Identity Provider can trigger logout from other Service Providers using Font-channel or
Back-channel. 

6. The Identity Provider redirects to the Service Provider EndPoint

7. The Service Provider returns successfully logout

Description



OpenID-Connect example
Identity Provider

Service Provider

https://bookstack.soffid.com/uploads/images/gallery/2022-08/image-1661408366204.png
https://bookstack.soffid.com/uploads/images/gallery/2022-08/image-1661408426358.png

