OpenlD-Connect

e OpenlID-Connect

e OpenlID-Connect architecture

e OpenlID-Connect example

Openl|D-Connect

Introduction

44 OpenlID is an open standard and decentralized authentication protocol. It allows
users to be authenticated by cooperating sites (known as relying parties, or RP)
using a third-party service, eliminating the need for webmasters to provide their
own ad hoc login systems, and allowing users to log into multiple unrelated
websites without having to have a separate identity and password for each.

It is identity layer on top of the OAuth 2.0 protocol. OpenlID-Connect is based on most modern
protols. It uses JSON tokens, signed and optionally encripted using JWT standard, and uses simple
REST as its transport protocol.

Sometimes referred as OpenlID, must not be confused with an older and deprecated standard

OpeniD

https://en.wikipedia.org/wiki/OpenlD#QOpenlD Connect (OIDC)

https://openid.net/

https://bookstack.soffid.com/uploads/images/gallery/2021-09/1024px-openid-logo-2-svg.png
https://openid.net/
https://en.wikipedia.org/wiki/OpenID#OpenID_Connect_(OIDC)

OpenlID-Connect architecture

Introduction

OpenlID is based on the well known protocol. It is easier to implement and deploy, as it does not
require digital signature or encryption. The drawback is that it is significantly less secure. For
example, the single logout protocol is not finished yet.

Single Log-in

The usual log-in process follows the next UML diagram:

Browser Service Provider Soffid Idp

I.___
|
===

Access to the page
>
T
1
L Redirect + Authorization req
Authorization request
P
T
1
1
1
: Optionally, request credential
Credentials (user name + password) N
Redirect + Authorization code
Authorization code
»
Token request
d >
oAuth Token + OpenlD Token
Requested page i P

Description

1. User's browser tries to get a web page from the service providers

2. . The service provider wants to authenticate the user identity. To get this, redirects the user to
the identity provider, including the returning URL.

3. The authorization request is received by the identity provider. At this point, the identity
provider verifies it is issued by an authorized service provider.

Next, the identity providers checks if the user browser does have an active SSO session. In such a
case, skip to step 6.

4. The identity providers ask for credentials to the user.

The user enters its credentials. At this time, the identity provider verifies the user name and
password are correct, and creates a new SSO session.

The identity provider redirects the user to the service provider, sending an authorization code.

The service provider connects to the identity provider, using its client id and client secret, as
well as the authorization code.

The identity provider verifies the authorization code and generates two tokens: the oAuth token
and the OpenlD token. The Auth token is a bare token that can be used by the service provider to
perform additional requests.

The Openid token contains some user attributes. The included attributes and its value can vary
depending on the service provider that will receive it. This token can be signed using JWT
standard.

The service provider receives the both tokens, parsing the JSON document contained in the JWT
OpenlD token.

Single Log-out

One generic logout process diagram:

Browser

|

Logout Reguest

Service Provider

|.___

Redirect Logout EndPoint

'Logout

Post Logout

Identity Provider

I - - -

R R |

R

‘Front-channel or
, Back-channel
=== Logout

Post Logout redirect

0
[
[

-L

Logout successfully

a B
1
1
1
1
1
1

Description

1. The user requests to log out the application.

2. Logout in the Service Provider, for instance, delete cookies.

3. Redirect to the Identity Provider logout endpoint

4. Logout in the Identity Provider, for instance, delete cookies.

S

5. The Identity Provider can trigger logout from other Service Providers using Font-channel or
Back-channel.

6. The Identity Provider redirects to the Service Provider EndPoint

/. The Service Provider returns successfully logout

OpenlID-Connect example

ldentity Provider

QOpenlD Connect v

{

OooniDC = "authorization_endpoint”: "https://server/oauthZ/auth",
penlDConnect_| "token_endpeint”: "https.//server/oauth2/token”,

OpenlDConnect_Test "userinfo_endpoint”: "https://server/oauth2/userinfo”,
— "scopes_supperted”: ["openid”,"email","profile"],
Soffid |"display": "page”
}
contact pgarcia@soffid.com
&
oAuth key -
oAuth ret
user regu expres
Login hint scri loginHint /"

dentity provisioning seript

5

g a new identity. Return the use 2 /"
r name of the owner identity for the authenticated acc |,

Seript to bind

Service Provider

Type OpenlD Connect - wpersonations
publiciD : openicliab UID Serip B o G G D N D (o ot D e 7
Name OpeniD Connect tenant “
I -
gir -
em where

Client secre sssssssesssasees

se URL https:/flocalhost/return

Allowed scopes ‘ |+ Scope name § Required roles

O | apipersonread

O | apiperson.write
o | openid

Displayed rows: 3

Nate that the scope 'openid’ will always be accepted

A scope with no roles will be granted always

A scope with roles will be granted if the identified user has the required role
Add the scope * to allow any scope

https://bookstack.soffid.com/uploads/images/gallery/2022-08/image-1661408366204.png
https://bookstack.soffid.com/uploads/images/gallery/2022-08/image-1661408426358.png

