
Connecting an OpenID Connect service
Connecting a SAML service
Connecting Soffid console
Connecting your custom applications
Openid-connect to SAML interoperability
Openid-connect Dynamic Register
Connecting CAS client
Connecting Tacacs+
Connecting Radius client

Connecting Service
Providers

There are three basic OpenID flows, depending whether the service name must be authenticated
using its client secret or not:

Connecting an OpenID
Connect service
Introduction

OpenID flow

Implicit flow

The Service Provider sends the user to the IdP.
The IdP authenticates the user.
The user returns control to the Service Provider along an OpenID token
and an OAuth token.

Client credentials flow

The Service Provider sends the user to the IdP.
The IdP authenticates the user.
The user returns control to the Service Provider along an authorization
code.
The Service Provider gets the OpenID token and OAuth token from the
IdP by presenting the authorization code, and its client secret. This
request is using a direct connection between them.

Password authentication flow

The Service Provider asks for a user name and password.
The Service Provider gets the OpenID token and OAuth token from the
IdP by presenting the user's name and password, and optionally its
client secret. This request is using a direct connection between them.

“

1. To register an OpenId Connect service provider, open the federation page:

Main Menu > Administration > Configuration > Web SSO > Identity & Service providers

2. Then, select an Entity Group and the branch Service Providers and click on the Add Service
Provider button.

3. Soffid will display the following window:

Register an OpenId Connect
Service Provider

https://bookstack.soffid.com/uploads/images/gallery/2023-07/image-1689235669464.png

4. Finally, you must apply changes.

The client application creates a random String, named nonce, and sends to the user the following
URL

https://youridentityprovider:2443/authorization?
redirect_uri=https://<serviceprovider>/response&
client_id=MYCLIENT&
nonce=12345679801234567890&
scope=openid+test+other&
response_type=code

Then, the user will be asked for a username and password, or any other means of authentication.
After authenticating the user, the browser will be redirected to the URL configured in the service

For more information about the attributes, you can visit the OpenID Connect detailed info.

Examples
1. Authorization code flow

Request

https://bookstack.soffid.com/uploads/images/gallery/2023-07/image-1689236053673.png
https://soffid.bubu.lab:2443/token
https://bookstack.soffid.com/link/392#bkmrk-openid-connect

provider page, adding a one-time authorization code.

https://<serviceprovider>/response/?
code=XXXXXXXXXXXXXXX&
nonce=12345679801234567980

Once the service provider has received the one-time authorization code, it can connect to the
identity provider to retrieve the oAuth token, as well as the OpenID token.

POST https://youridentityprovider:2443/token

HEADERS
Accept: application/json
Authorization: Basic dGVzdDp0ZXN0
Content-Type: application/x-www-form-urlencoded

BODY PARAMS
grant_type=authorization_code&
code=XXXXXXXXXXXX

Authorization: contains, coded in base 64, the client id and the client secret, as it
would have been sent for a standard Basic authentication header. The identity provider
will match these against the stored credentials.
grant_type: should be authorization_code.
code: should be the one-time authorization code received in the previous requested.

{
 "access_token":"8bDP2P...",
 "refresh_token":"gjLmSW...",
 "id_token":"eyJra.eyJ.LQ_XtHKr.RY3A4...",
 "token_type":"Bearer",
 "expires_in":11998
}

The id_token tag contains the OpenId token.
The access_token tag contains the oAuth token.

Before the number of seconds specified om expires_in are elapsed, the token can be renewed by
invoking again the token endpoint changing the grant_type:

Request

Parameters

Response

Request

https://soffid.bubu.lab:2443/token

POST https://youridentityprovider:2443/token

HEADERS
Accept: application/json
Authorization: Basic dGVzdDp0ZXN0
Content-Type: application/x-www-form-urlencoded

BODY PARAMS
grant_type=refresh_token&
refresh_token=gjLmSW...

Authorization: contains, coded in base 64, the client id and the client secret, as it
would have been sent for a standard Basic authentication header. The identity provider
will match these against the stored credentials.
grant_type: should be refresh_token.
refresh_code: should be refresh code received in the previous requested.

{
 "access_token":"8bDP2P...",
 "refresh_token":"gjLmSW...",
 "id_token":"eyJra.eyJ.LQ_XtHKr.RY3A4...",
 "token_type":"Bearer",
 "expires_in":11998
}

The application asks the user for the user name and password. Then, it connects to the token
endpoint to get an access token:

Parameters

Response

2. User’s password + client credentials
flow

Request

https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/token

POST https://youridentityprovider:2443/token

HEADERS
Accept: application/json
Authorization: Basic dGVzdDp0ZXN0
Content-Type: application/x-www-form-urlencoded

BODY PARAMS
grant_type=password&
username=USER&
password=PASSWORD&XXXXXXXXXXXX

Authorization: contains, coded in base 64, the client id and the client secret, as it would
have been sent for a standard Basic authentication header. The identity provider will
match these against the stored credentials
grant_type: should be password
username: must be the user name entered by the user.
password: must be the password entered by the user.

{
 "access_token":"8bDP2P...",
 "refresh_token":"gjLmSW...",
 "id_token":"eyJra.eyJ.LQ_XtHKr.RY3A4...",
 "token_type":"Bearer",
 "expires_in":11998
}

The id_token tag contains the openid token.
The access_token tag contains the oAuth token.

Before the number of seconds specified in expires_in are elapsed, the token can be renewed by
invoking again the token endpoint:

POST https://youridentityprovider:2443/token

HEADERS
Accept: application/json
Authorization: Basic dGVzdDp0ZXN0
Content-Type: application/x-www-form-urlencoded

BODY PARAMS
grant_type=refresh_token&
refresh_token=gjLmSW...

Parameters

Response

Request

https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/token

Authorization: contains, coded in base 64, the client id and the client secret, as it would
have been sent for a standard Basic authentication header. The identity provider will
match these against the stored credentials
grant_type: should be refresh_token
refresh_code: should be refresh code received in the previous requested

{
 "access_token":"8bDP2P...",
 "refresh_token":"gjLmSW...",
 "id_token":"eyJra.eyJ.LQ_XtHKr.RY3A4...",
 "token_type":"Bearer",
 "expires_in":11998
}

The application wants to revoke the token and session cookie:

POST https://youridentityprovider:2443/revoke

HEADERS
Accept: application/json
Content-type: application/x-www-form-urlencoded
Authorization: Basic dGVzdDp0ZXN0

BODY PARAMS
token_type_hint=token=access_token&
token=8bDP2P...

Authorization: contains the encoded client id and client secret.
token_type_hint: can have the following values:

access_token
refresh_token
session_cookie

token: contains the authorization token, refresh_token or session_cookie value

Parameters

Response

3. Closing the session

Request

Parameters

https://soffid.bubu.lab:2443/token

All the user attributes can be extracted from the OpenID token. Anyway, it is possible to get them
in a more readable format user the user-info endpoint.

GET https://youridentityprovider:2443/userinfo

HEADERS
Accept: application/json
Authorization: Bearer dGVzdDp0ZXN0

Authorization: contains a valid access token.

{
 "sub": "admin",
 "surname": "Admin",
 "given_name": "Admin",
 "member_of": [
 "TestRole2@soffid",
 "TestRole@soffid"
]
}

Sometimes, a mobile application has authenticated the user using the username & password grant,
but wants to share this authenticated session with the underlying web browser. For such a case,
the application can request a session cookie with this request:

GET https://youridentityprovider:2443/session_cookie

HEADERS
Accept: application/json
Authorization: Bearer dGVzdDp0ZXN0

4. Getting user attributes

Request

Parameters

Response

5. Getting a session cookie for the user

Request

Parameters

https://soffid.bubu.lab:2443/session_cookie
https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/session_cookie
https://soffid.bubu.lab:2443/session_cookie
https://soffid.bubu.lab:2443/token
https://soffid.bubu.lab:2443/session_cookie

Authorization: contains a valid access token.

{
"cookie_domain": "cookied",
"user": "pgarcia",
"cookie_value": "5458083_bT2CZlaa6psl/q3ue6NObxX8Q7duQKj0hAuUJIouT5Y=",
"cookie_name": "cookien"

}

Response

Please note that it is mandatory to fill in the name of the cookie in the identity provider, at
the session management section

To connect a SAML service provider, the service provider must offer you its SAML metadata. The
SAML metadata contains information about its public id, the services that implement and the
service endpoints.

1. Open the Identity & Service Provider page.

Main Menu > Administration > Configure Soffid > Web SSO > Identity & Service providers

2. To add a new service provider, click on the Add Service Provider button.

3. Then you must fill in the required fields. Also, you need to provide the identity provider
metadata. You can either copy it from the Soffid federation page or instruct the service provider to
download the federation metadata by itself.

Connecting a SAML service
Introduction

Register a SAML service provider

Be in mind that you can configure more than one Entity Group and you could add new
service providers in each one.

4. To publish the federation members metadata, the main sync server exports the members
metadata at the path /SAML/metadata.xml. Thus, if your sync server is listening at
soffid1.your.domain, you can get the whole federation metadata document from
https://soffid1.your.domain:760/SAML/metadata.xml.

5. After some seconds, up to five minutes, every federation member will notice any change.

For more information about the attributes, you can visit the SAML detailed info.

https://bookstack.soffid.com/uploads/images/gallery/2023-07/image-1689237747516.png
https://bookstack.soffid.com/link/392#bkmrk-openid-connecthttps://bookstack.soffid.com/link/392#bkmrk-saml

Soffid console has a built-in SAML client, so it can act as a service provider in the Soffid federation.
It is interesting to use this configuration, as it allows you to enforce the use of two factors
authentication to log into the Soffid console.

1. Enable the SAML protocol in the Soffid console:

1.1. Open the Authentication page:

Main Menu > Administration > Configure Soffid > Security settings > Authentication

1.2. You must enable the External XAML identity provider.

1.3. Then you must fill in the fields:

Soffid server host name: URL of the Soffid console.
SAML federation metadata URL: URL where the whole federation metadata can be
obtained. It used to be https://your.primary.sync.server:760/SAML/metadata.xml
Sometimes, an error as "unable to find valid certification path to requested target" could
be displayed.

In that case, you must obtain the public certificate from the sync server and store in your Java
trusted certs repository. To do that, use the keytool command. The trusted certs repository is

Connecting Soffid console
Introduction

Register Soffid as a service provider

https://bookstack.soffid.com/uploads/images/gallery/2023-07/image-1689256229585.png
https://your.primary.sync.server:760/SAM/metadata.xml

located at <JAVA_HOME>/lib/security/cacerts

The command should look like the next one. When prompted for a password type in "changeit"

root@myserver:~$ /usr/lib/jvm/java-8-openjdk-amd64/jre/bin/keytool
-import -file /tmp/RootCA -trustcacerts -alias syncserver
-keystore /usr/lib/jvm/java-8-openjdk-amd64/jre/lib/security/cacerts

Cache limit (seconds): the amount of time the metadata should be kept in memory
before refreshing.
Identity provider: after reading the federation metadata, this drop-down box lets you
select any identity provider present at the federation. Usually, you will select the Soffid
IdP.

2. Download Soffid console metadata:

2.1. Open the Authentication page:

Main Menu > Administration > Configure Soffid > Security settings > Authentication

2.1. Click the Download metadata button and save the file.

This XML file is the metadata descriptor for the console, including a self-signed certificate
generated to sign SAML requests.

The XML file will be like the next one:

https://bookstack.soffid.com/uploads/images/gallery/2023-07/image-1689329490746.png

3. Register Soffid Metadata in the third-party Identity Provider.

4. You can use the Wizard to Add Applications

5. Test it

5.1. Next time you log into the Soffid console, a new button will appear for External
(XAML) login

For more information, visit the Add Applications page.

https://bookstack.soffid.com/uploads/images/gallery/2023-07/image-1689334608813.png
https://bookstack.soffid.com/books/configuration-wizard/page/add-applications-qO4

5.2. Click on the External (SAML) login button, and the user will be forwarded to the identity
provider.

https://bookstack.soffid.com/uploads/images/gallery/2021-12/image-1640009166065.png

SAML 2.0 is a complex and not easy to implement standard. There are some libraries that can help
somewhat, but a correct implementation needs a deep knowledge of SAML protocol, and is always
hard to test and debug.

To make it easier, Soffid provides some JSON rest web services, that can help any application to
correctly implement the SAML service provider part of the protocol.

The following diagram, shows the resulting data flow between the end user, your application, the
identity provider and Soffid web services:

Connecting your custom
applications
Introduction

Data flow

1. The end-user requests access to a protected page

2. The custom application can check the user identity looking up a session variable. By the time
being, the user is not authenticated.

3. The custom application issues a JSON request to Soffid web service. In turn, Soffid web service
builds, signs and maybe encrypts a SAML request

4. Then custom application taks the JSON request and builds an HTTP Redirect response with the
received data.

5. The identity provider identifies the user as usual.

6. The custom application receives the SAML response. At this point, the application packs and
forwards the received data to Soffid Web Service.

Data flow steps

7. Soffid Web Service decrypts and checks SAML response integrity and correctnes, and returns a
JSON document specifying the success or failure status, and the underlying identity attributes. If
needed, Soffid web service can provision a new identity in target systems on the fly.

8. The custom application gets the identity data, stores it in a session variable and provides the
protected resource to the end user.

In order to get it, will be necessary:

1. Declare the custom application as an internal service provider in the federation page.
2. Create a Soffid application account for the custom application.
3. Implement the protection filters.
4. Implement the endpoint where the SAML response must be sent.

You can create an internal service provider as a SAML service provider.

After deploying Soffid SAML addon, a web service to generate SAML request will be automatically
deployed. This web service requires an account with the federation:serviceProvider
authorization.

The endpoint will be locate in Soffid Console:

http://your.soffid.console:8080/webservice/federation/rest/generate-saml-request

Method:

POST

Headers to include in the request:

Accept = “application/json”
Content-Type = “application/json”

Example
1. Creating an internal service provider

2. SAML Request generator

http://your.soffid.console:8080/webservice/federation/rest/generate-saml-request

Request: Send a JSON decument with following fields:

user → suggested user to authenticate (optional)
identityProvider → identity provider public ID. Must match the public ID of any
identity provider registered in Soffid federation.
serviceProviderName → service provider which requests the user
authentication. Must match the public ID of an internal service provider
sessionSeconds → max time for the user session inactivity

Response:

method → Method to use: urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST
instructs the application to build a HTML Form that automatically submits the
following parameters. Value urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect
instructs the application to perform a redirect (Location HTTP header) with the
URL and parameters specified
parameters → every parameter included must be submited to the identity
provider. Usually, these two will be present:
RelayState → identifier of the ticket of the SAML request
SAMLRequest → encoded SAML request
url → identity provider endpoint.

Request sample:

{
 "user" : "myuser@soffid.poc",
 "identityProvider" : "my-service-provider",
 "serviceProviderName" : "https://idp.soffid.com",
 "sessionSeconds" : "3600"
}

Response sample:

{
 "method": "urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect",
 "parameters": {
 "RelayState":
 "_457cab260c4948ef4c6d35a67cac000d3348d1ec48f53215",
 SAMLRequest":
 “PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz48c2FtbDJ..."
 },
 "url": "https://idp.soffid.com/SAML/Redirect"
}

In turn, your application will issue the following location header to the browser

3.

Location:
https://idp.soffid.com/SAML/Redirect?RelayState=_457cab260c4948ef4c6d35a67cac000d3348d1ec48f53215&SAMLRequ
est=PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz48c2FtbDJ...

Should the method be urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST, your application should
build an HTML similar the following one:

<form action="https://idp.soffid.com/SAML/Redirect">
 <input type="hidden" name="RelayState" value="457cab260c4948ef4c6d35a67cac000d3348d1ec48f53215"
/>
 <input type="hidden" name="SAMLRequest"
value="PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz48c2FtbDJ....."
/>
</form>
<script>
 document.form[0].submit();
</script>

Your application must implement the SAML response endpoint. This endpoint must accept the POST
method and forward each received parameter to Soffid's parse-saml-response. Mind that your
endpoint must accept application/x-www-form-urlencoded parametern while Soffid service accepts
application/json.

Soffid endpoint will be located in Soffid Console:

http://your.soffid.console:8080/webservice/federation/rest/generate-saml-request

Method:

POST

Headers:

Accept = “application/json”
Content-Type = “application/json”

Authentication:

Use your application account to login using basic authentication schema. In multitenant
environments, the user name will have the forma TENANT_NAME\ACCOUNT_NAME

Request: send a JSON document with following fields

autoProvision → [false|true] Set to true if you want Soffid to automatically enroll
unknown identities. This is not normally needed if you are using Soffid IdP, but it's
useful when using third party IdPs.

4. SAML Response endpoints

response: JSON object with any parameter received in post method.
RelayState → identifier of the ticket of the SAML response
SAMLResponse → encoded SAML response
protocol → use always “urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST”
serviceProviderName → service provider which requests the user authentication

Response:

authentication → [yes|no]
failureMessage → if authentication=”no”, a message with the error cause.
principalName → account name, as sent by the IdP
user → Soffid identity with standard attributes
attributes → Soffid identity custom attributes
sessionId → session identifier

POST /saml-receiver
Host: my-service-provider
Content-Type: application/x-www-form-urlencoded
RelayState=_523866242f943b4c63234dc8942ffc2f08cea03aa129a4e2&SAMLResponse=PD94bWwgdmVyc2lvbj0iMS4wIi
BlbmNvZGluZz0iVVRGLTgiPz48c2FtbDJ.…

{
 "autoProvision" : false,
 "response" : {
 "RelayState":
 "_523866242f943b4c63234dc8942ffc2f08cea03aa129a4e2",
 "SAMLResponse":
 "PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz48c2FtbDJ...."
 },
 "protocol" : "urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST",
 "serviceProviderName" : "my-service-provider"
}

Example data received by your endpoint

Example request

Example response

{
 "authentication": "yes",
 "principalName": "your-name@somedomain.com",
 "user": {
 "id": 123456,
 "userName": "your-id",
 "firstName": "Your",
 "lastName": "Name",
 "primaryGroup": "enterprise",
 "active": true,
 "shortName": "your-name",
 "mailDomain": "somedomain.com"
 },
 "attributes": {
 "employeeId": "AS14567"
 },
 "sessionId": "ABCTASHO54684A"
}

OpenID-Connect has a clear design suitable for both frontend and backend.

SAML has a clear design for the frontend, but the backend usage is harder as the security in SAML
cannot be placed at transport layer. Instead, in must be placed at document level. Additionally, it
requires intensive use of cryptographic algorithms for signature and encryption.

That’s why some applications put a SAML frontend protection for both the frontend and relay on
the session cookies generated by the fronted for backend access.

The problem arises when one service provider needs to invoke some services from a SAML enabled
application that does not support or implement WS-Security.

To solve it, Soffid Identity Provider provides a service to get the session cookies required to
access to a SAML application.

The rest service /userinfo/impersonate?url=…. will do the job, and will return the cookies to use
to act upon the target application impersonating the current user.

Openid-connect to SAML
interoperability
Introduction

Data flow

Request

POST https://<YOUR_SERVER>:2443/userinfo/impersonate?url=http://targetapplication/
Accept: application/json
Content-type: application/x-www-form-urlencoded
Authorization: Basic dGVzdDp0ZXN0
[
 {
 "path":"/",
 "domain":"samltest.id",
 "name":"_shibsession_64656661756c7468747470733a2f2f73616d6c746573742e69642f73616d6c2f7370",
 "value":"_fa49874951dd05c18a0f68642c0736e9"
 },
 {
 "path":"/",
 "domain":"samltest.id",

"name":"_opensaml_req_ss%3Amem%3A88b0af3e1ff47c911257490bc1a5749dfda1670948a563cec2fdf9e8a799f2c4",
 "value":""
 }
]

URL: is the access URL for the target application.
Authorization: contains the oauth token.

The response contains the list of cookies to send to the target application.

[
 {
 "path":"/",
 "domain":"samltest.id",
 "name":"_shibsession_64656661756c7468747470733a2f2f73616d6c746573742e69642f73616d6c2f7370",
 "value":"_fa49874951dd05c18a0f68642c0736e9"
 },
 {
 "path":"/",
 "domain":"samltest.id",

"name":"_opensaml_req_ss%3Amem%3A88b0af3e1ff47c911257490bc1a5749dfda1670948a563cec2fdf9e8a799f2c4",
 "value":""
 }
]

Once the application has got the list of cookies, it can invoke the target application URL

Parameters

Response

Request

https://soffid.bubu.lab:2443/token

POST https://targetapplication/api/service1
Accept: application/json
Content-type: application/json
Cookie: cookie1=value1

As security measures, the impersonation profile must be enabled, and the source application
must be entitled to use it against the target application

https://targetapplication/api/service1

Openid-connect allows a service provider registers dynamically other service providers.

To dynamically register a client, acquire an initial access token, and then register the new
application by using the registration API. You can get the access token from Soffid.

Authorization

Authorization: contains the Bearer Token.

Header

Content-type: application/x-www-form-urlencoded

JSON

Openid-connect Dynamic
Register
Introduction

Dynamic Register

Register Server
Request

POST https://<YOUR_SERVER>:2443/register

{
 "application_type": "web",
 "redirect_uris":
 ["https://client.example.org/callback",
 "https://client.example.org/callback2"],

Authorization

Authorization: contains the Bearer Token. It contains the registration_access_token
Token received as the response when the server was registered.

Header

Content-type: application/json

 "client_name": "My Example 7",
 "logo_uri": "https://client.example.org/logo.png",
 "subject_type": "pairwise",
 "token_endpoint_auth_method": "client_secret_basic",
 "jwks_uri": "https://client.example.org/my_public_keys.jwks",
 "userinfo_encrypted_response_alg": "RSA1_5",
 "userinfo_encrypted_response_enc": "A128CBC-HS256",
 "contacts": ["ve7jtb@example.org", "mary@example.org"],
 "request_uris":
 ["https://client.example.org/rf.txt#qpXaRLh_n93TTR9F252ValdatUQvQiJi5BDub2BeznA"]
}

Response 200 OK

{
 "client_secret_expires_at": 0,
 "registration_client_uri": "https://iam-sync-tenantidp.soffidnet:2443/register?client_id=DR_7",
 "client_secret": "wBeH8G6hT2GRwr7jJ6HfX2lMJDGdwGi9M49SKF2MjHRGOtwZ",
 "redirect_uris": [
 "https://client.example.org/callback",
 "https://client.example.org/callback2"
],
 "registration_access_token": "NjYxODg1Ng.AFa8jQbltq+bocWQpT3okPvHXHrTM+HqXQC26Kz5mfAWfXWG",
 "client_name": "My Example 7",
 "client_id": "DR_7"
}

Client read request
Request

GET https://<YOUR_SERVER>:2443/register?client_id=DR_7

Params

client_id

Response

{
 "client_secret_expires_at": 0,
 "registration_client_uri": "https://iam-sync-tenantidp.soffidnet:2443/register?client_id=DR_7",
 "redirect_uris": [
 "https://client.example.org/callback",
 "https://client.example.org/callback2"
],
 "client_name": "My Example 7",
 "client_id": "DR_7"
}

The CAS protocol is a simple and powerful ticket-based protocol. It involves one or many clients
and one server. Clients are embedded in CASified applications (called “CAS services”) whereas the
CAS server is a standalone component.

1. Open the Identity & Service Provider page.

Main Menu > Administration > Configure Soffid > Web SSO > Identity & Service providers

2. To add a new service provider, click on the Add Service Provider button.

3. Then you must fill in the required fields. Also, you need to provide the identity provider
metadata. You can either copy it from the Soffid federation page or instruct the service provider to
download the federation metadata by itself.

Connecting CAS client
Introduction

Register CAS client

Be in mind that you can configure more than one Entity Group and you could add new
service providers in each one.

https://bookstack.soffid.com/uploads/images/gallery/2022-08/image-1661408241083.png

For more information about the attributes, you can visitthe CAS client detailed info.

https://bookstack.soffid.com/link/392#bkmrk-cas-client

TACACS (Terminal Access Controller Access Control System) is a security protocol that
provides centralized validation of users who are attempting to gain access to a router or NAS

TACACS+ is a protocol for AAA services:

Authentication
Authorization
Accounting

1. Open the Identity & Service Provider page.

Main Menu > Administration > Configure Soffid > Web SSO > Identity & Service providers

2. To add a new service provider, click on the Add Service Provider button.

3. Then you must fill in the required fields. Also, you need to provide the identity provider
metadata. You can either copy it from the Soffid federation page or instruct the service provider to
download the federation metadata by itself.

Connecting Tacacs+
Introduction

Register Tacas+

Be in mind that you can configure more than one Entity Group and you could add new
service providers in each one.

When a Tacacs Service Provider is created, Soffid creates an Information System

There are some roles defined for this Information System (0: anonymous, 1: user,15: root)

For more information about the attributes, you can visit the Tacacs+ detailed info.

https://bookstack.soffid.com/uploads/images/gallery/2023-04/image-1681221680349.png
https://bookstack.soffid.com/uploads/images/gallery/2023-04/image-1681221732876.png
https://bookstack.soffid.com/link/392#bkmrk-tacacs%2B

https://bookstack.soffid.com/uploads/images/gallery/2023-04/image-1681221803826.png

The Radius protocol (Remote Authentication Dial-In User Service) is a networking protocol that
authorizes and authenticates users who access a remote network.

1. Open the Identity & Service Provider page.

Main Menu > Administration > Configure Soffid > Web SSO > Identity & Service providers

2. To add a new service provider, click the Add Service Provider button.

3. Then, you must fill in the required fields. Also, you need to provide the identity provider
metadata. You can either copy it from the Soffid federation page or instruct the service provider to
download the federation metadata by itself.

Connecting Radius client
Introduction

Register a Radius client

Be in mind that you can configure more than one Entity Group and you could add new
service providers in each one.

For more information about the attributes, you can visit the Radius detailed info.

https://bookstack.soffid.com/uploads/images/gallery/2023-07/image-1689336949656.png
https://bookstack.soffid.com/link/392#bkmrk-radius-client

