
Configuring Rules for Single Sign On
Support and configuration tools
ESSO Scripting Language
Configuring terminal emulation SSO

ESSO Configuring
Rules for Single Sign
On

User interface pattern recognition
Web interfaces pattern recognition
Configuring rules for basic / kerberos authentication

SSO system is configured based on the detection of administrator defined User Interface
patterns. The system currently supports native Windows applications, Java applications and Web
applications.

The UI Patterns are expressed with XML files associated with each application entry point. They are
composed of:

Rules for detecting user interfaces (defined like application attributes or elements).
Action to be taken on user interface recognition. (defined with the action element for the
application).

Complementary to the rules defined in Sofifd Console, the synchronization server manages a
repository of user accounts and passwords, as well as other information generically known as
secrets. In general, the system will handle any number of secrets as well as any number of
accounts for each managed systems. Anyway, each account for a managed system will have only
one password.

All secrets can be used and manipulated using a scripting language fully compatible with ECMA-
Script, also known as Javascript.

The user interface detection for Windows and Java applications is done using the Application
 tag. This tag will contain one or more Component tagged elements. Each component could have
many nested components. Each component could have one or more actions to perform when the
user focus is at a selected component.

Configuring Rules for Single
Sign On
Configuring Single Sign-on

User interface pattern recognition

Next is a sample to inject the secret name “JconsolePassword” into jconsole application:

<Mazinger>
 <Application cmdLine = '.*jconsole$'>
 <Component class =
'sun.tools.jconsole.JConsole' title = 'Java Monitoring &
Management Console' name = 'frame0'>
 <Component class =
'sun.tools.jconsole.JConsole\$FixedJRootPane'>
 <Component class =
'javax.swing.JPanel' name = 'null.glassPane' />
 <Component class =
'javax.swing.JLayeredPane' name = 'null.layeredPane'>
 <Component class =
'javax.swing.JPanel' name = 'null.contentPane'>

 <Component class =
'javax.swing.JPasswordField' text ='' ref-as = 'password'>

Patterns to be match

 <Action type='script'
event='onFocus'>
 <! [CDATA [
 var account
= secretStore.getAccount('soffid');
 var password
= secretStore.getPassword('soffid', account);
 debug ('user
=' + account);
 debug
('password =' + password);

password.setText (secretStore.getSecret ('password'));
]]>
 </ Action>

The action you want to be executed

....

Thus, when the system detects that the user is within a window that meets the XML specification
and the password text box is the focus owner, Soffid will execute the script action that is bound.
This one will show the user password in a jconsole application field.

The Application contains in the attribute cmdLine a regular expression that is matched against the
process command line. In the example, SSO will only match a running program with a command
line that ends with "jconsole". It won't apply to jconsole.exe or “jconsole test”.

The element Application accepts the following attributes:

cmdLine Regular expression to match the command line.

The Component element allows the following attributes:

class Regular expression to validate against the kind of visual
component, either a Java class or a window class.

name Regular expression to match the name of the
component. Applies only to Java components.

text Regular expression to match the content of a text
component

title Regular expression to match the title of a java component.

dlgId Regular expression to match window ID dialog on Windows
component.

optional If the value is true, the presence of the component is not
considered critical to trigger actions associated dialogue.

check

When the check attribute has the value “partial”, the
matcher engine considers the user interface component
matches the XML pattern even when it has one or more
children components that are not declared at the XML
pattern.
If you specify the value full value or the attribute is
missing, the component will not match the pattern if it has
children are components not specified in XML descriptor.
Thus, the rule will be ignored.

ref-as Specifies a name of a ECMA-Script variable that will refer
to this component.

The Action element accepts the following attributes:

event Name of the event that will trigger the action. In the
current version must be set to "onFocus"

type
Indicates the type of action. Can have the following values:
setText: Assigns a text value to the owner component.
script. Run the specified script.

text Text to assign, for setText actions.

repeat
If set to true, the action will be executed as many times as
necessary.
Otherwise, it will only run once per process.

delay Time (in seconds) that must be elapsed before the action
is executed again.

The detection is done using the element WebApplication. This tag is independent of the browser
used, and is based solely on the content of web document. Thus, the same rule will work both on
Mozilla Firefox, Google Chrome or Internet Explorer.

Web interfaces pattern recognition

<Mazinger>
 <WebApplication url = 'https://www.caib.es. *' title
= 'Government of the Balearic Islands'>
 <Form action = "j_security_check">
 <Input name="j_username" ref-as="u"/>
 <Input name="j_password"
type="password" ref-as="p"/>
 <Input type="Submit" ref-as="b" />

Patterns to be match

 <Action Type='script' event='onLoad'>
 <! [CDATA [
 debug('User =' +
secretStore.getSecret ('user'));
 debug ('password =' +
secretStore.getSecret ('password'));
 u.setAttribute ('value'
secretStore.getSecret ('user'));
 p.setAttribute ('value'
secretStore.getSecret ('password'));
 b.click();
]]>
 </Action>

Action you want to be executed

 </Form>
 </WebApplication>
</Mazinger>

Thus, when the system detects that the browser has loaded a page matching the XML specification
(url, title, and components), it will run the actions that have been associated.

Mind that despite the actions being coded in Javascript, it is not the Browser javascript engine.
Thus, you cannot use browser variables or functions.

The element WebApplication accepts the following attributes:

url Regular expression to match the page address

title Regular expression to match the title of the page

content Regular expression to match the HTML content of the page

The Form element will search in the HTML document for a form that matches the specified
attributes. It can optionally contain one or more input elements that must be present in the HTML
document. It accepts the following attributes:

id Regular expression to match the ID attribute of the
element

name Regular expression to match the element name

https://www.caib.es/

method Regular expression to match the form element's method
attribute.

action Regular expression to match the form element's action
attribute.

ref-as Specifies a name of a ECMA-Script variable that will refer
to this form.

optional A value of true indicates that its presence is not necessary
for the execution of actions.

The Input element will search in the HTML document for an input element that matches the
specified attributes. Input elements can be located within WebApplication or Form elements. In the
first case, you will find there is any input into the document. In the second case, just find the type
items included in the input form found.

id Regular expression to match the ID attribute of the
element

name Regular expression to match the element name

type Regular expression to match the input type

value Regular expression to match the input value.

ref-as Specifies a name of a ECMA-Script variable that will refer
to this form.

optional A value of true indicates that its presence is not necessary
for the execution of actions.

The Action element accepts the following attributes:

event Name of the event that will trigger the action. In the
current version must be set to "onFocus"

type
Indicates the type of action. Can have the following values:
setText: Not supported
script. Run the specified script.

repeat
If set to true, the action will be executed as many times as
necessary.
Otherwise, it will only run once per process.

delay Time (in seconds) that must be elapsed before the action
is executed again.

Configuring rules for basic /
kerberos authentication

Some web pages are still using basic or kerberos authentication mechanisms. These mechanisms
do not present a web page to be filled in by the user. Thus, the ESSO engine cannot detect it using
the method described previously.

Instead, starting from Soffid ESSO version 3.0.0, there is a new tag to teach the ESSO which
credentials to send in these cases. The rules will be like the next ones:

The tag to use is WebTransport. It has three parameters:
Attribute Value

url

The base url to use. Include the protocol and port number
when needed. Any BASIC, NTLM or Kerberos authentication
requested by that server will be automatically answered
with the credentials present in the password vault

system The ESSO will send any credential that the user has in that
system. Other credentials will be ignored

domain

This is an optional attribute. It's required when trying to
use Kerberos or NTLM authentication if the account name
does not contain the domain name part. If the account
contains the domain name, this attribute should not be
present.

Due to the different ways that browsers address this kind of authentication, the user interface will
be displayed according to the browser settings. For instance, Edge and Internet Explorer will
display a UA dialog box.

<Mazinger>

 <WebTransport url="https://no-soffid.bubu.lab:4443/" system="OSCM"/>

 <WebTransport url="https://no-ad.bubu.lab/" system="ad" domain="AD"/>

</Mazinger>

Additionally, you can drive SSO by yourself for testing purposes. Mazinger.exe is the command line
version of Soffid ESSO. It accepts the following commands:

To stop SSO service:

To start Mazinger services:

To get a configuration file, you can download from:
https://<synchronizationserver>:760/getmazingerconfig?user =

The -debug switch allows Mazinger to display all the single sign on events that are produced at
users applications.

The -trace switch is only inteded for debugging and support usage.

To view all the single sign on events on a running ESSO instance, you can run:

Support and configuration
tools
Introduction

KojiKabuto.exe, the main Soffid ESSO component, picks settings and rules automatically from
Soffid synchronization server at login. This configuration can be updated by running the
command "KojiKabuto update". Once run, new rules will apply to all new processes. Mind
that application processes that where running before the update is done will still use the old
rules set.

mazinger stop

mazinger start [-trace] [-debug] [file.mzn]

To view current SSO service status, run:

Mazinger can also dump XML files describing the applications user interface. This XML files can be
used to describe SSO rules. To dump this XML descriptors, execute:

Mazinger spy and mazinger trace are very useful when you are creating a new ESSO rule in order
to see what parameters, components, atributes, ... the application are using.

In order to execute this commands, you must go to the ESSO installation directory. For example,
C:\Program Files\SoffidEsso\mazinger.exe trace.

mazinger debug

mazinger status

mazinger spy

ESSO Scripting Language

Visit the ESSO Scripting Language chapter.

https://bookstack.soffid.com/books/esso/chapter/esso-scripting-language

To configure SSO on terminal emulations, an HLL API bridge has been built. This bridge allows
direct communication with the terminal emulator in order to create accurate SSO rules that can be
triggered based on the screen display.

Next, you have a sample rule for terminal emulation SSO:

HLL API rule

The rule should contain one or more patterns that will be matched against the specified row. If the
screen matches all the specified patterns, the action will be executed as usual.

Nevertheless, HLL applications differ in some way from other application rules as long as the HLL
engine (Sewashi) must be started separately from the ESSO engine. To active the HLL rules engine,
the sewashi program must be started, specifying the HLL API used to interact with the terminal
emulator, and optionally, the sessions to be managed:

Configuring terminal
emulation SSO
Introduction

<Mazinger>

<HllApplication>

 <Pattern row="2">.*SOFFID.*</Pattern>

 <Pattern row="23">.*ABC.*</Pattern>

 <Action type="script" event="onMatch" repeat="true" delay="1">

 account = secretStore.getAccount ("390host");

 password = secretStore.getPassword ("390host", account);

 hll.setCursorLocation (22,3);

 hll.sendText ("HELLO "+account);

 hll.setCursorLocation (23, 3);

 hll.sendText ("YOUR PASSWORD IS "+password);

 hll.sendKeys("@E");

 </Action>

</HllApplication>

</Mazinger>

To stop the HLL engine, Sewashi --stop can be executed. This program can executed from Soffid
login and logout scripts.

%ProgramFiles%\SoffidESSO\Sewashi.exe --dll "%ProgramFiles%\IBM\Personal

Communications\PCSHLL32.DLL" --sessions ABCDEFG

