
JSON REST Web Services Connector
JSON REST Web Services Connector - Properties
How to configure the Office 365 agent?
How to configure the Jira Atlassian agent?

JSON REST Web
Services Connector

This connector allows the integration with any Web Service able to consume and generate JSON
documents through REST communication.

Every commercial product or custom web application allows REST communication with JSON
documents.

There are a lot of products that use this standard, for instance:

JIRA.
Oracle Field Service Cloud (OFSC).
Office 365.
AWS.
Google Cloud.

It is needed a user with access and permissions to the endpoints and operations required in the
scope of the integration.

JSON REST Web Services
Connector
Introduction
Description

Managed System

If your system is not in the previous list, it's possible to include it easily!

For more information to check if your system may be synchronized with this connector you
do not hesitate to contact us through our Contact form

Prerequisites

http://www.soffid.com/contactform/

Also, the documentation, specification, or tutorial of the implementation of the JSON REST Web
Service is required to apply the mapping configuration.

This addon is located in the Connectors section and its name is REST (json) plugin.

After the installation of the addon, you may create and configure agent instances.

To configure this JSON REST Web Service Connector you must select "JSON Rest Webservice" in the
attribute "Type" of the generic parameters section in the agents' page configuration.

Download and Install

You can visit the Addons Getting started page for more information about the installation
process.

Agent Configuration
Basic
Generic parameters

For more information about how you may configure the generic parameters of the agent,
see the following link: Agents configuration

https://bookstack.soffid.com/books/addons-getting-started/page/getting-started
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/agents

Below there are the specific parameters for this agent implementation:

Parameter Description

Server URL URL of the REST web service.
Base URL for making calls.

Authentication
method

Available options:
None: no authentication (User and Password are not used).
Basic: it uses the User and Password to generate the authentication token.
Bearer token: it is provided by the application to which we are trying to connect.
Token: generate a token from a specific authentication URL. It is no longer used.
Token oAuth Client Credentials: authenticates based on a client ID and a client
secret.
Token oAuth Password Grant: authenticates based on a client ID and a client
secret plus a user name and a password.

(*) You can find more information in the Authentication method section.

Enable debug Two options: "Yes", "No": it enables or not more log traces in the Synchronization Server log

Proxy host Only when the proxy is needed.

Proxy port Only when the proxy is needed.

XML Templates Allows you to add new XML templates with SOAP requests and then configure them at attribute
mappings.

Custom parameters

https://bookstack.soffid.com/uploads/images/gallery/2022-07/image-1658998971348.png

None: no authentication is needed. There are no parameters to configure.

Basic: the username and password are sent with each request.

User Name: user to authenticate.
Password: the password of the user to authenticate.

Bearer token

Bearer token: this token is provided by the application to which we are going to connect.

Token: calls the authentication URL with the POST method and with the username and password,
and the response will be the token. It is no longer used.

User Name: user to authenticate.
Password: the password of the user to authenticate.
Authentication URL: URL to retrieve the token for the server's authentication (for the
"Token" method).

Authentication method

https://bookstack.soffid.com/uploads/images/gallery/2022-07/image-1658916253736.png
https://bookstack.soffid.com/uploads/images/gallery/2022-07/image-1658916073500.png
https://bookstack.soffid.com/uploads/images/gallery/2022-07/image-1658916094610.png

Token oAuth Client Credentials

Authentication URL: URL to retrieve the token for the server's authentication (for the
"Token" method).
Token attr. output: the value is always access_token.
Request parameters:

Client ID: it is like the user.
Client secret: it is the password.
Scope: it is the permissions.

Token oAuth Password Grant

User Name: user to authenticate.
Password: the password of the user to authenticate.
Authentication URL: URL to retrieve the token for the server's authentication (for the
"Token" method).
Token attr. output: the value is always access_token.
Request parameters:

Client ID: it is like the user.
Client secret: it is the password.

https://bookstack.soffid.com/uploads/images/gallery/2022-07/image-1658916132666.png
https://bookstack.soffid.com/uploads/images/gallery/2022-07/image-1658916165066.png

Scope: it is the permissions.

This connector can manage users, accounts, roles, groups, and grants.

This agent allows you to define methods to be called using the defined properties. There are some
default methods, but you can customize your own methods.

Default methods:

load
delete
update
insert
select

For each method, the properties to set up are as follows:

Properties Description

Attribute mapping

Note that any changes made to the methods will affect the properties and vice versa.

Methods

https://bookstack.soffid.com/uploads/images/gallery/2022-07/image-1658916206788.png

Path A valid URL to call. This path must be the continuation of
the Server URL for making calls.

Method Available methods to call a Rest API (GET, POST, PUT,
DELETE, PATCH)

Encoding The specific type of encoded data that will be used. There
are three supported types:

application/x-www-form-urlencoded
application/json
text/xml

XML Template Applies only if it is text/xml. You need to write the name of
the corresponding template defined on the XML
Templates.

Parameters Applies with application/x-www-form-urlencoded and
application/json

You must type which attributes, defined on the
System attributes, will be sent.
 If none are to be sent, you must write the
hyphen character "-".
If nothing is typed, all parameters are sent.

Success HTTP Codes HTTP codes that should be interpreted as OK. If no code is
entered, Soffid will take as valid codes the following: 200,
201, 204 and 404.
If you type the Success HTTP codes, it will be not
necessary to type the Failure HTTP codes.

You can use blanks or commas to separate the codes.

204 201 200

200,212

Failure HTTP Codes Soffid will take by default as failure all codes not indicated
in Success HTTP Codes.
If you type the Failure HTTP codes, it will be not necessary
to type the Success HTTP codes.

You can use blanks or commas to separate the codes.

400 403

403,405, 400

Results Gets the object or object list from the response received.
You need to indicate a JSON attribute name to check and
get the data. If this element is not present, or empty, the
connector will conclude the user does not exist yet. You
can type simple attribute names or even complex scripts.

Pagination URL Often, the response from the API Rest service does not
contain all the data because the data is too large. In these
cases, you can use the paging options to request the data
in blocks.
When the response gives us the URL of the next page to
fetch, you must type the tag name of this attribute.

You have to choose one of the paging methods, using both
is not compatible.

return links{"next"};

Pagination script Often, the response from the API Rest service does not
contain all the data because the data is too large. In these
cases, you can use the paging options to request the data
in blocks.
You can type a complex script to get the next call that has
to be done. There are two available objects:

response: JSON response as received
request: allows you to update the attributes
and return true if you want to make a new call
or false in another case

You have to choose one of the paging methods, using both
is not compatible.

o = response{"paging"};
if (o{"has_next_page"}) {
 nextPage = o{"page_number"} + 1;
 request.put("page", nextPage);
 return true;
} else {
 return false;
}

Condition script Return false if you want to prevent a call.

Optional header Use this property to send HTTP header(s).
More than one header can be sent by adding multiple
properties Optional Header1.
The value of the header is "HEADER:VALUE", for instance,
"Accept:application/json".

Load

Select

Insert

https://bookstack.soffid.com/uploads/images/gallery/2022-07/image-1658840538394.png
https://bookstack.soffid.com/uploads/images/gallery/2022-07/image-1658840570200.png

Update

Delete

https://bookstack.soffid.com/uploads/images/gallery/2022-07/image-1658840500870.png
https://bookstack.soffid.com/uploads/images/gallery/2022-07/image-1658840611561.png

In this agent, the configuration of the properties attributes is very important due to they define the
functionality of the integration:

This agent has five families of properties:

Family Description

Load Used to retrieve all the objects in the target system

Select Used to retrieve an object in the target system

Insert Used to create an object in the target system

Update Used to update an object in the target system

Delete Used to remove an object in the target system

These families are involved in the following processes:

Process Families

Reconcile automatic task Load + select

Authoritative automatic task Load + select

Sync new object Select + Insert

Sync updated object Select + Update

Properties

https://bookstack.soffid.com/uploads/images/gallery/2022-07/image-1658840656509.png

Process Families

Sync deleted object Select + Delete

These are the pictures of the mechanisms used to synchronize objects:

Sync object

Remove object

You can customize attribute mappings, you only need to select system objects and the Soffid
objects related, manage their attributes, and make either inbound and outbound attribute
mappings.

You may map the attributes of the target system with the Soffid available attributes.

For the target system attributes is required to be access to its specification.
For the Soffid attributes, you may follow the next link.

For instance:

You can find more information by visiting the Properties attributes page.

Attributes

For more information about how you may configure attribute mapping, see the following
link: Soffid Attribute Mapping Reference

https://bookstack.soffid.com/books/connectors/page/json-rest-web-services-connector-properties
https://bookstack.soffid.com/link/72#bkmrk-soffid-attributes

As an example, below is how JSON connector will look like in order to manage JIRA accounts:

You can define BeanShell scripts that will be triggered when data is loaded into the target system
(outgoing triggers). The trigger result will be a boolean value, true to continue or false to stop.

Triggers can be used to validate or perform a specific action just before performing an operation or
just after performing an operation on target objects.

Triggers

To view some examples, visit the Outgoing triggers examples page.

https://bookstack.soffid.com/uploads/images/gallery/2022-07/image-1658843268020.png
https://bookstack.soffid.com/books/connectors/page/outgoing-triggers-examples

In this agent, the configuration of the properties attributes is very important due to they define the
functionality of the integration:

This agent has five families of properties:

Family Description

Load Used to retrieve all the objects in the target system

Select Used to retrieve an object in the target system

Insert Used to create an object in the target system

Update Used to update an object in the target system

Delete Used to remove an object in the target system

These families are involved in the following processes:

Process Families

Reconcile automatic task Load + select

Authoritative automatic task Load + select

Sync new object Select + Insert

Sync updated object Select + Update

Sync deleted object Select + Delete

These are the properties attributes grouped by family:

Property Description

loadPath (required) Denotes the path (relative to webserver root) where the WebService is located. It can
contain variable names in the form of ${variableName}. JSON connector will replace
that name for the actual value. Eventually, complex expressions can be written in, but
it's discouraged

JSON REST Web Services
Connector - Properties

Load

Property Description

loadMethod (required) Denotes the HTTP method to use: PUT, POST, GET and DELETE are allowed

loadEncoding (required) Type of encoded data that will be used.

loadParams (optional) Put the character '-' in case you would avoid its value

loadTemplate (optional) Name of the corresponding template defined on the XML Templates.

loadResults (optional) But highly recommended) denotes the JSON portion that contains current data for the
object. If this element is not present, or empty, the connector will conclude the object
does not exist yet. This property will contain a simple JSON attribute name, but complex
scripts are also allowed.

loadSuccessCodes
(optional)

The HTTP codes to be interpreted as OK.

loadFailureCodes
(optional)

The HTTP codes to be interpreted as Error.

loadNext (optional) Next page to fetch. When the response gives us the URL of the next page to fetch, you
must type the tag name of this attribute.

loadPagination (optional) Complex script to get the next call that has to be done.

loadCondition (optional) Script to prevent a call. To prevent the call must return false.

loadHeader (optional) Use this property to send HTTP header(s).
More than one header can be sent by adding multiple properties loadHeader1,
loadHeader2, and so on.
The value of the header is "HEADER:VALUE", for example "Accept:application/json".

Property Description

selectPath (required) Denotes the path (relative to webserver root) where the WebService is located. It can
contain variable names in the form of ${variableName}. JSON connector will replace
that name for the actual value. Eventually, complex expressions can be written in, but
it's discouraged

selectMethod (required) Denotes the HTTP method to use: PUT, POST, GET and DELETE are allowed

Select

Property Description

selectEncoding (required) Denotes the encoding used to send to the target webservice. application/json and
 application/x-www-form-urlencoded are supported. The first one is used by default
to POST and PUT requests. The second one is used by default for GET and DELETE
requests

selectParams (optional) Put the character '-' in case you would avoid its value

selectTemplate (optional) Name of the corresponding template defined on the XML Templates.

selectResults (optional) Denotes the JSON portion that contains current data for the object. If this element is not
present, or empty, the connector will conclude the object does not exist yet. This
property will contain a simple JSON attribute name, but complex scripts are also allowed

selectSuccessCodes
(optional)

The HTTP codes to be interpreted as OK.

selectFailureCodes
(optional)

The HTTP codes to be interpreted as Error.

selectNext (optional) Next page to fetch. When the response gives us the URL of the next page to fetch, you
must type the tag name of this attribute.

selectPagination (optional) Complex script to get the next call that has to be done.

selectCondition (optional) Script to prevent a call. To prevent the call must return false.

selectHeader (optional) Use this property to send HTTP header(s).
More than one header can be sent by adding multiple properties selectHeader1,
selectHeader2, and so on.
The value of the header is "HEADER:VALUE", for instance, "Accept:application/json".

Property Description

insertPath (required) Denotes the path (relative to webserver root) where the webservice is located.

insertMethod (required) Denotes the HTTP method to use: PUT, POST, GET and DELETE are allowed

insertEncoding (required) Denotes the encoding used to send to the target webservice. application/json and
 application/x-www-form-urlencoded are supported. The first one is used by default
to POST and PUT requests. The second one is used by default for GET and DELETE
requests

insertTemplate (optional) Name of the corresponding template defined on the XML Templates.

Insert

Property Description

insertParams (optional) Type in the attributes that will be sent to the rest server. If this property is not set, all
attributes will be sent.

insertResults (optional) Denotes the JSON portion that contains current data for the object. If this element is not
present, or empty, the connector will conclude the object does not exist yet. This
property will contain a simple JSON attribute name, but complex scripts are also allowed

insertSuccessCodes
(optional)

The HTTP codes to be interpreted as OK.

insertFailureCodes
 (optional)

The HTTP codes to be interpreted as Error.

insertCondition (optional) Script to prevent a call. To prevent the call must return false.

insertHeader (optional) Use this property to send HTTP header(s).
More than one header can be sent by adding multiple properties insertHeader1,
insertHeader2, and so on.
The value of the header is "HEADER:VALUE", for example "Accept:application/json".

Property Description

updatePath (required) Denotes the path (relative to webserver root) where the webservice is located

updateMethod (required) Denotes the HTTP method to use: PUT, POST, GET and DELETE are allowed

updateEncoding (required) Denotes the encoding used to send to the target webservice. application/json and
 application/x-www-form-urlencoded are supported. The first one is used by default
to POST and PUT requests. The second one is used by default for GET and DELETE
requests

updateParams (optional) Type in the attributes that will be sent to the rest server. If this property is not set, all
attributes will be sent.

updateResults (optional) Denotes the JSON portion that contains current data for the object. If this element is not
present, or empty, the connector will conclude the object does not exist yet. This
property will contain a simple JSON attribute name, but complex scripts are also allowed

Update

Property Description

updateSuccessCodes
(optional)

The HTTP codes to be interpreted as OK.

updateFailureCodes
 (optional)

The HTTP codes to be interpreted as Error.

updateCondition (optional) Script to prevent a call. To prevent the call must return false.

updateHeader (optional) Use this property to send HTTP header(s).
More than one header can be sent by adding multiple properties updateHeader1,
updateHeader2, and so on.
The value of the header is "HEADER:VALUE", for example "Accept:application/json".

Property Description

deletePath (required) Denotes the path (relative to webserver root) where the webservice is located

deleteMethod (required) Denotes the HTTP method to use: PUT, POST, GET and DELETE are allowed

deleteEncoding (required) Denotes the encoding used to send to the target webservice. application/json and
 application/x-www-form-urlencoded are supported. The first one is used by default
to POST and PUT requests. The second one is used by default for GET and DELETE
requests

deleteParams (optional) Type in the attributes that will be sent to the rest server. If this property is not set, all
attributes will be sent.

deleteResults (optional) Denotes the JSON portion that contains current data for the object. If this element is not
present, or empty, the connector will conclude the object does not exist yet. This
property will contain a simple JSON attribute name, but complex scripts are also allowed

deleteSuccessCodes
(optional)

The HTTP codes to be interpreted as OK.

deleteFailureCodes
 (optional)

The HTTP codes to be interpreted as Error.

deleteCondition (optional) Script to prevent a call. To prevent the call must return false.

deleteHeader (optional) Use this property to send HTTP header(s).
More than one header can be sent by adding multiple properties deleteHeader1,
deleteHeader2, and so on.
The value of the header is "HEADER:VALUE", for example "Accept:application/json".

Delete

How to retrieve data from the response with the *Results properties

a) One level

b) Two level

c) More than two levels

If the JSON has one level you have to avoid the property
{
 "userName" : "soffid"
}

If the JSON has two levels you have to create the property *Result and put the name of the parent attribute, for
example:
{
 "user" : {
 "userName" : "soffid"
 }
}
And the property must be for example loadResults = user

If the JSON has more than two levels you have to create the property *Result and put the atributes in the next
pattern

*Results = attribure1{"attribute2"}{"attribute3"}...

For example:
{
	"data" : {
 "user" : {
 "userName" : {
 "string" : "soffid"
 }
 }
 }
}

And the property must be for example:

loadResults = data{"user"}{"userName"}

You need to install the last version of JSON Rest Connector

Configure the Basic data to establish the connection

Then, configure the attribute mappings

How to configure the Office
365 agent?
Office 365 integration
Prerequisites

Configuration

https://bookstack.soffid.com/uploads/images/gallery/2022-07/image-1658931279840.png

Basic attribute mappings: agent-config-Office365-Basic.xml
Attribute mappings with immutable ID and Azure groups: agent-config-Office365-
MoreComplex.xml

Soffid provides you versions of the attribute mappings to import into the agent
configuration:

https://bookstack.soffid.com/uploads/images/gallery/2022-07/image-1658932645128.png
https://bookstack.soffid.com/attachments/52
https://bookstack.soffid.com/attachments/53
https://bookstack.soffid.com/attachments/53

You need to install the last version of JSON Rest Connector.

Configure the Basic data to establish the connection

Then, configure the attribute mappings

How to configure the Jira
Atlassian agent?
Jira integration
Prerequisites

Configuration

https://bookstack.soffid.com/uploads/images/gallery/2022-07/image-1658994257906.png

Soffid provides you an XML file with the basic attribute mappings to import into the agent
configuration JIRA Soffid agent-config.xml

https://bookstack.soffid.com/uploads/images/gallery/2022-07/image-1658994301791.png
https://bookstack.soffid.com/attachments/54

