
That is the first step of the workflow. At that step, you could define the fields you want to show
when the end users will go to make a request.

In this tab you could configure next parameters:

Task name: identified name for the task that will be created when the workflow is
requested.
Permission request screen type: this allows you to select how the permissions will be
displayed on the screen. There are two available options:

List of permissions: this option needs to configure a user selector on the fields tab.
When end-users request a process, first of all, they will select the user and the
permissions, and then the permissions, the list of available permissions depends on
the selected user.
Self service request: if you select the self-service request, it will not be mandatory
to configure the user selector on the fields tab. That option can be configured to
request permission for your own user, or to third users configuring the user selector.
When end-users request a process, the available permissions will be displayed to
select from the information system for the roles defined. When you select one or
more roles, those will be added to the shopping cart to make the request.

Role selection filter: this allows you to define a Script that returns the available roles to
select. At the script window, you could find information about the available context
variables.
Application selection filter: this allows you to define a Script that returns the available
applications to select. At the script window, you could find information about the available
context variables.

Start

Definition

Steps Tabs
Task details

In this tab, you could choose what fields the process form will show to the end users. You can
choose these fields from all identity attributes, and from the attributes defined for the workflow on
the Attributes Tab.

By default, only the Permissions field will be shown. That field is defined on the attributes tab. You
can choose the fields you want to show when the end-users, add new fields, and delete the fields
that do not need to generate a task. Also, you can sort the fields, you only need to drag and drop
on the Order column.

For each field, you may indicate if it is a readOnly field, and you may add a Validation script and
Visibility script. The validation script allows you to define rules, the field has to comply with these
rules. The visibility script allows you to define the rules to show or hide a field.

It is also allowed in the following manner:

Validate that a certain field is not repeated:

Fields

Validation examples

if (value == null || value.equals(""))

 throw new Exception("The userName is mandatory");

else

 return true;

if (value == null || value.equals(""))

 return ("The userName is mandatory");

else

 return true;

userList = serviceLocator.getUserService().findUserByJsonQuery("attributes.field_XX eq \"" +

value +"\"");

if (!userList.isEmpty() {

 return "the field field_XX is associated to another user";

}

return true;

Visibility example

On the trigger tab, you could define different triggers using custom scripts. Those triggers will be
launched with the events you will define.

onLoad: you can use that trigger to perform some actions before the execution of the
step.
on PrepareTransition: you can use that trigger to perform some actions after the
execution of the step and before starting a transition to another step.
onChange: you can use that trigger to perform some actions when the value of the
attribute is changed. You could choose the field from a list.

1. Calculate the email when firstName or lastName changes and depending on the userType:

user = serviceLocator.getUserService().getCurrentUser();

if ("admin".equals(user.userName))

 return false;

Triggers

Example

firstName = (inputFields.get("firstName")!=null) ? inputFields.get("firstName").value :

null;

lastName = (inputFields.get("lastName")!=null) ? inputFields.get("lastName").value : null;

userType = (inputFields.get("userType")!=null) ? inputFields.get("userType").value : null;

if (firstName!=null && !firstName.trim().isEmpty() &&

 lastName!=null && !lastName.trim().isEmpty() &&

 userType!=null && !userType.trim().isEmpty()) {

 emailAddress = firstName + "." + lastName;

 if ("E".equals(userType)) {

 		emailAddress = emailAddress + ".ext@soffid.com";

 } else {

 	emailAddress = emailAddress + "@soffid.com";

 }

 inputFields.get("emailAddress").value = emailAddress;

}

You can find more information about StandardUserWindow.java on Github.

https://github.com/SoffidIAM/addon-bpm/blob/master/bpm-web-common/src/main/java/com/soffid/iam/addons/bpm/ui/StandardUserWindow.java

2. Load the user data into the form.

This process type does not have task details for the start step.

The Outcoming transition tab displays the next steps where the flow can go from the current step.
When you create a process from a template or from scratch default outcoming transitions are
defined. It is allowed to customize the default setup, add new transitions, or delete transitions.

From: current step.
Incoming transition: name of the transition.
To: the next step, where the flow goes.
Action: allows creating a custom script to perform specific actions.

When you create an outcoming transition, Soffid creates the proper incoming transition.

Validation of mandatory fields:

user = serviceLocator.getUserService().getCurrentUser();

task.getVariables().put("action", "M");

task.getVariables().put("userSelector", user.userName);

workflowWindow.fetchUserAttributes()

Incoming transitions

Outgoing transitions

Example

a = executionContext.getVariable("firstName");

if (a==null || "".equals(a.trim()))

 throw new Exception("First name is mandatory");

a = executionContext.getVariable("lastName");

if (a==null || "".equals(a.trim()))

 throw new Exception("Last name is mandatory");

a = executionContext.getVariable("primaryGroup");

if (a==null || "".equals(a.trim()))

 throw new Exception("Primery group is mandatory");

return true;

To request the process is only allowed for Internal users:

userSelector = executionContext.getVariable("userSelector");

user = serviceLocator.getUserService().findUserByUserName(userSelector);

if (user.userType.equals("I") || user.userType.equals("S")) {

	throw new Exception ("To request the process is only allowed for Internal users");

}

Revision #17
Created 15 June 2021 13:33:52 by pgarcia@soffid.com
Updated 30 October 2023 10:00:34 by pgarcia@soffid.com

