
Define the user management steps

Start
Screen
Detect duplicated user
Apply changes
Custom
Mail
Fork
Join
End

User management
steps



That is the first step of the workflow. At that step, you could define the fields you want to show
when the end users will go to make a request.

This process type does not have task details for the start step.

In this tab, you could choose what fields the process form will show to the end users. You can
choose these fields from all identity attributes, and from the attributes defined for the workflow on
the Attributes Tab.

By default, all the identity attributes will be shown, and an additional field called Action. You can
choose the fields you want to show when the end-users, add new fields, and delete the fields that
do not need to generate a task. Also, you can sort the fields, you only need to drag and drop on the
Order column.

The Action field is a droplist that will allow end-users to select one of the different options to
perform. The available actions, defined by default on the Attributes tab:

Add user: action uses to generate a task to create a new identity. 
Enable user: action uses to create a task to enable an identity who is disabled.
Modify user: action uses to create a task to modify identity attributes.
Disable user: action uses to create a task to disable identity.

To enable, modify or disable an identity, you need to add a field with the name userSelector,
defined on the Attributes tab. That field will be available, to end-users,  to select an existing
identity when selecting one of that options. When you select an identity, Soffid will show all the
attributes defined on the form to the end user.

Start
Definition

Steps Tabs
Task details

Fields



For each field, you may indicate if it is a readOnly field, and you may add a Validation script and
Visibility script. The validation script allows you to define rules, the field has to comply with these
rules. The visibility script allows you to define the rules to show or hide a field.

It is also allowed in the following manner:

Validate that a certain field is not repeated:

On the trigger tab, you could define different triggers using custom scripts. Those triggers will be
launched with the events you will define.

Validation examples

if (value == null || value.equals(""))
  throw new Exception("The userName is mandatory");
else 
  return true;

if (value == null || value.equals(""))
  return ("The userName is mandatory");
else 
  return true;

userList = serviceLocator.getUserService().findUserByJsonQuery("attributes.field_XX eq \"" + value +"\"");
if (!userList.isEmpty() {
  return "the field field_XX is associated to another user";
}
return true;

Visibility example

user = serviceLocator.getUserService().getCurrentUser();
if ("admin".equals(user.userName)) 
  return false;

SCIM filter example

userType eq "E"

Triggers



onLoad: you can use that trigger to perform some actions before the execution of the
step.
on PrepareTransition: you can use that trigger to perform some actions after the
execution of the step and before starting a transition to another step.
onChange: you can use that trigger to perform some actions when the value of the
attribute is changed. You could choose the field from a list.

1. Calculate the email when firstName or lastName changes and depending on the userType: 

2. Load the user data into the form.

Example

firstName   = (inputFields.get("firstName")!=null) ? inputFields.get("firstName").value : null;
lastName    = (inputFields.get("lastName")!=null) ? inputFields.get("lastName").value : null;
userType    = (inputFields.get("userType")!=null) ? inputFields.get("userType").value : null;

if (firstName!=null && !firstName.trim().isEmpty() &&
    lastName!=null && !lastName.trim().isEmpty() &&
    userType!=null && !userType.trim().isEmpty()) {
  
  emailAddress = firstName + "." + lastName;
   if ("E".equals(userType)) {
   		emailAddress = emailAddress + ".ext@soffid.com";
   } else {
     	emailAddress = emailAddress + "@soffid.com";
   }
  inputFields.get("emailAddress").value = emailAddress;
  
}

You can find more information about StandardUserWindow.java on Github.

user = serviceLocator.getUserService().getCurrentUser();
task.getVariables().put("action", "M");
task.getVariables().put("userSelector", user.userName);
workflowWindow.fetchUserAttributes()

Incoming transitions

https://github.com/SoffidIAM/addon-bpm/blob/master/bpm-web-common/src/main/java/com/soffid/iam/addons/bpm/ui/StandardUserWindow.java


This process type does not have task details for the start step.

The Outcoming transition tab displays the next steps where the flow can go from the current step.
When you create a process from a template or from scratch default outcoming transitions are
defined. It is allowed to customize the default setup, add new transitions, or delete transitions.

From: current step.
Incoming transition: name of the transition.
To: the next step, where the flow goes.
Action: allows creating a custom script to perform specific actions.

When you create an outcoming transition, Soffid creates the proper incoming transition.

Check if there are any similar identities:

Outgoing transitions

Example

firstName = executionContext.getVariable("firstName");
birthDate = executionContext.getVariable("birthDate");

df = new java.text.SimpleDateFormat("yyyy-MM-dd");
query = "firstName co \""+firstName+"\" and attributes.birthDate sw \""+df.format(birthDate)+"\"";

users = serviceLocator.getUserService().findUserByJsonQuery(query);
if ( !users.isEmpty()) {
  throw new es.caib.bpm.toolkit.exception.UserWorkflowException("Your identity is probably registered. Please, 
contact your system administrator");
}



This step is used to define the custom form that will be used by the users who have to approve or
to reject the generated task. To configure that step will be necessary to determine the fields that
will be show to the users, and the actions that these users could perform.

In this tab you could configure next parameters:

Task name: identified name for the task that will be created when the workflow is
requested.
Actor(s) expression: allows you to write an expression to identify the actor depending
on the requested role. One can use EL expressions (*) based on role and application
attributes. For instance: SOFFID_MANAGER/${primaryGroup}
Assignment script: alternatively, allows you to write a Beanshell script to return the
actor depending on the process variables. For instance: return
primaryGroup.attributes{"owner"};
Approve from email: checked it to allow you to send a mail for approval of the task. 

In this tab, you could choose what fields the process form will show to the end users. You can
choose these fields from all identity attributes, and from the attributes defined for the workflow on
the Attributes Tab. By default, all the identity attributes will be shown. You can choose the fields
you want to show, add new fields, and delete the fields that do not need to generate a task. Also,
you can sort the fields, you only need to drag and drop on the Order column.

For each field, you may indicate if it is a readOnly field, and you may add a Validation script and
Visibility script. The validation script allows you to define rules, the field has to comply with these
rules. The visibility script allows you to define the rules to show or hide a field.

Screen
Description

Steps Tabs
Task details

Fields



On the trigger tab, you could define different triggers using custom scripts. Those triggers will be
launched with the events you will define.

onLoad: you can use that trigger to perform some actions before the execution of the
step.
on PrepareTransition: you can use that trigger to perform some actions after the
execution of the step and before starting a transition to another step.
onChange: you can use that trigger to perform some actions when the value of the
attribute is changed. You could choose the field from a list.

1. How to set a value depending on a variable (onLoad).

2. Validate a field value (onChange)

Example

if (value == null || value.equals(""))
  return ("The NIF is mandatory");
else 
  return true;

Trigger

Example

userType = task.getVariables().get("userType");
if ("I".equals(userType))  { 
  task.getVariables().put("country", "ES");
}

firstName   = (inputFields.get("firstName")!=null) ? inputFields.get("firstName").value : null;
lastName    = (inputFields.get("lastName")!=null) ? inputFields.get("lastName").value : null;
country    = (inputFields.get("country")!=null) ? inputFields.get("country").value : null;

if (firstName!=null && !firstName.trim().isEmpty() &&
    lastName!=null && !lastName.trim().isEmpty() &&
     country!=null && !country.trim().isEmpty()) {
  
	emailAddress = firstName + "." + lastName;
  	if ("ES".equals(country)) {
   		emailAddress = emailAddress + ".@soffid.es";



The Incoming transitions tab displays the previous steps where the flow comes from. When you
create a process from a template or from scratch default incoming transitions are defined. It is
allowed to customize the default setup, add new transitions, or delete transitions.

From: the previous step, where the flow comes. Allows you to select where the workflow
comes from.
Incoming transition: brief name to identify the transition. That is the name of the action
the form will show to the final user.
To: current step.
Action: allows creating a custom script to perform specific actions.

When you create an incoming transition, Soffid creates the proper outcoming transition.

The incoming script action is the same outgoing script action of the previous step.

The Outcoming transition tab displays the next steps where the flow can go from the current step.
When you create a process from a template or from scratch default outcoming transitions are
defined. It is allowed to customize the default setup, add new transitions, or delete transitions.

From: current step.
Incoming transition: name of the transition.
To: the next step, where the flow goes.
Action: allows creating a custom script to perform specific actions.

When you create an outcoming transition, Soffid creates the proper incoming transition.

   	} else {
     	emailAddress = emailAddress + "@soffid.com";
    }
  	inputFields.get("emailAddress").value = emailAddress;
}

Incoming transitions

Example

selector = executionContext.getVariable("userSelector");
user = serviceLocator.getUserService().findUserByUserName(selector);
executionContext.setVariable("testName", user.firstName);
executionContext.setVariable("testOperation", "CHECK");

Outgoing transitions



Update custom attributes defined on metadata

* https://es.wikipedia.org/wiki/Expression_Language

Example

userName = executionContext.getVariable("userName");
attributes = serviceLocator.getUserService().findUserAttributes(userName);

newAttributes = new HashMap();
newAttributes.put("country", "FR");

language = attributes.get("language");
if (language == null) {
  language = new LinkedList();
}
language.add("Spanish");
language.add("German");

newAttributes.put ("language", language);

serviceLocator.getUserService().updateUserAttributes(userName, newAttributes);

https://es.wikipedia.org/wiki/Expression_Language


That step is used to define the proper rules to determine the potential conflicts between the
identity for who is the request, and the Soffid existing identities. Whit that definition, Soffid will find
the potential conflicts, and the end-user could select the best option to solve those (merge or
create a new one).

Task name: identified name for the task that will be created. For instance: Check
duplicates for #{firstName} #{lastName}
Actor(s) expression: write an expression to identify the actor depending on the
requested role. One can use EL expressions based on role and application attributes. For
instance: SOFFID_MANAGER/${primaryGroup}
Assignment script: alternatively, write a Beanshell script to return the actor depending
on the process variables. For instance: return primaryGroup.attributes{"owner"};
Weight threshold: in the tab "User queries", you can define many different queries to
search for similar users, and each query has a weight. If a user is found in one or more
queries, the weight of each one of these queries are added. If the total weight is equal to
or greater than the current threshold, the user is considered a user match.

In this tab, you could choose what fields the process form will show to the end users. You can
choose these fields from all identity attributes, and from the attributes defined for the workflow on
the Attributes Tab. By default, all the identity attributes will be shown. You can choose the fields
you want to show, add new fields, and delete the fields that do not need to generate a task. Also,
you can sort the fields, you only need to drag and drop on the Order column.

For each field, you may indicate if it is a readOnly field, and you may add a Validation script and
Visibility script. The validation script allows you to define rules, the field has to comply with these

Detect duplicated user
Definition

Steps Tabs
Tasks details

Fields



rules. The visibility script allows you to define the rules to show or hide a field.

This tab is only available when one of the below Step types is Detect duplicated user.

User queries allow you to customize a SCIM or Text query to detect duplicated users. You may
define a weight for each query. If a user is found in one or more queries, the weight of each one of
these queries are added. If the total weight is equal to or greater than the current weight threshold
(defined on the Task details tab), the user is considered a user match.

Text Query 

SCIM Query

Define the weight threshold on the Task detail tab

Define the weight for each query on the User query tab: A user is considered duplicated when at
least two queries are true.

User queries

Examples

${lastName}

attributes.birthDate eq "${birthDate}"

https://bookstack.soffid.com/uploads/images/gallery/2021-06/image-1622707864803.png


The Incoming transitions tab displays the previous steps where the flow comes from. When you
create a process from a template or from scratch default incoming transitions are defined. It is
allowed to customize the default setup, add new transitions, or delete transitions.

From: the previous step, where the flow comes. Allows you to select where the workflow
comes from.
Incoming transition: brief name to identify the transition. That is the name of the action
the form will show to the final user.
To: current step.
Action: allows creating a custom script to perform specific actions.

When you create an incoming transition, Soffid creates the proper outcoming transition.

The incoming script action is the same outgoing script action of the previous step.

The Outcoming transition tab displays the next steps where the flow can go from the current step.
When you create a process from a template or from scratch default outcoming transitions are
defined. It is allowed to customize the default setup, add new transitions, or delete transitions.

Incoming transitions

Example

selector = executionContext.getVariable("userSelector"); 
user = serviceLocator.getUserService().findUserByUserName(selector); 
executionContext.setVariable("testName", user.firstName); 
executionContext.setVariable("testOperation", "CHECK");

Outgoing transitions

https://bookstack.soffid.com/uploads/images/gallery/2021-06/image-1622707825784.png


From: current step.
Incoming transition: name of the transition.
To: the next step, where the flow goes.
Action: allows creating a custom script to perform specific actions.

When you create an outcoming transition, Soffid creates the proper incoming transition.

Add comments to the task:

Example

executionContext.getToken().addComment("Automatic comments.......");



This step is used to apply the identity changes to the Soffid repository.

Apply users changes: check it (select the Yes option) to make changes to users on the
Soffid repository.
Apply entitlements: check it (select the Yes option) to make changes to permissions on
the Soffid repository.

Incoming transitions
The Incoming transitions tab displays the previous steps where the flow comes from. When you
create a process from a template or from scratch default incoming transitions are defined. It is
allowed to customize the default setup, add new transitions, or delete transitions.

From: the previous step, where the flow comes. Allows you to select where the workflow
comes from.
Incoming transition: brief name to identify the transition. That is the name of the action
the form will show to the final user.
To: current step.
Action: allows creating a custom script to perform specific actions.

When you create an incoming transition, Soffid creates the proper outcoming transition.

Apply changes
Definition

Steps Tabs
Task details

Example

requester = executionContext.getVariable("requester");
userR = serviceLocator.getUserService().findUserByUserName(requester);



The Outcoming transition tab displays the next steps where the flow can go from the current step.
When you create a process from a template or from scratch default outcoming transitions are
defined. It is allowed to customize the default setup, add new transitions, or delete transitions.

From: current step.
Incoming transition: name of the transition.
To: the next step, where the flow goes.
Action: allows creating a custom script to perform specific actions.

When you create an outcoming transition, Soffid creates the proper incoming transition.

if (userR.primaryGroup.equals("admingroup")) {
	//TO-DO
} else {
	//TO-DO
}

Outgoing transitions

Example

userName = executionContext.getVariable("userName");
user = serviceLocator.getUserService().findUserByUserName(userName);
country = user.getAttributes().get("country");
groups = serviceLocator.getGroupService().findUsersGroupByUserName(userName);

if (country.equals("ES")) {
	//TO-DO
}



This step is used to define a custom script that will be executed 

All the process types have the same Task details for the Custom step:

Script: allows you to define a Script this step allows you to add a script to be executed.

Custom
Definition

Steps Tabs
Task details

Example

comments = executionContext.getToken().getComments();
selector = executionContext.getVariable("userSelector");
if (selector == null || selector.equals("")) {
     return ("The userName is mandatory");
}
user = serviceLocator.getUserService().findUserByUserName(selector);
if (user != null) {
  subject = "Soffid - Notification";
  message = "Automated mail sent ..............";
  
  if (comments != null && !comments.isEmpty()) {
    for (comment : comments) {
      message += comment.message;
    }
  }
  serviceLocator.getUserService().sendHtmlMailToActors(new String[]{user.userName}, subject, message);
}



The Incoming transitions tab displays the previous steps where the flow comes from. When you
create a process from a template or from scratch default incoming transitions are defined. It is
allowed to customize the default setup, add new transitions, or delete transitions.

From: the previous step, where the flow comes. Allows you to select where the workflow
comes from.
Incoming transition: brief name to identify the transition. That is the name of the action
the form will show to the final user.
To: current step.
Action: allows creating a custom script to perform specific actions.

When you create an incoming transition, Soffid creates the proper outcoming transition.

Scroll through the list of roles and the list of grant hierarchies to execute some actions.

The Outcoming transition tab displays the next steps where the flow can go from the current step.
When you create a process from a template or from scratch default outcoming transitions are
defined. It is allowed to customize the default setup, add new transitions, or delete transitions.

From: current step.
Incoming transition: name of the transition.
To: the next step, where the flow goes.
Action: allows creating a custom script to perform specific actions.

Incoming transitions

Example

userName = executionContext.getVariable("userName");

roleList = serviceLocator.getApplicationService().findRolesByUserName(userName);
for (role:roleList) {
  //TO-DO
}

user = serviceLocator.getUserService().findUserByUserName(userName);
roleGrantList = serviceLocator.getApplicationService().findRoleGrantHierarchyByUser(user.id);
for (roleGrant:roleGrantList) {
  //TO-DO
}

Outgoing transitions



When you create an outcoming transition, Soffid creates the proper incoming transition.

Delete additional attribute

Example

userName = executionContext.getVariable("userName");
attribute = serviceLocator.getUserService().findDataByUserAndCode(userName, "country");

if (attribute != null) {
  serviceLocator.getAdditionalDataService().delete(attribute);
}



This step allows you to configure the necessary parameters to send an email when the flow
reaches this point. That mail will be an informative mail, and the receptor could not perform any
action from the mail.

To send mail, you will need to configure mail server parameters. You can visit the Soffid
parameters page for more information.

When you select the Mail Step type, you could configure the mail information to send and the
recipients of that information. To send a mail from Soffid Console is needed to have a mail server
configuration.

Identities(s): User, group, role, or email which is the recipient.
Email address(es): Set one or more valid email addresses.
Subject: Subject of the mail.
Email message: Message of the mail.

The Incoming transitions tab displays the previous steps where the flow comes from. When you
create a process from a template or from scratch default incoming transitions are defined. It is
allowed to customize the default setup, add new transitions, or delete transitions.

From: the previous step, where the flow comes. Allows you to select where the workflow
comes from.
Incoming transition: brief name to identify the transition. That is the name of the action
the form will show to the final user.
To: current step.

Mail
Definition

Steps Tabs
Task details

Incoming transitions

https://bookstack.soffid.com/books/soffid-3-reference-guide/page/soffid-parameters
https://bookstack.soffid.com/books/soffid-3-reference-guide/page/soffid-parameters


Action: allows creating a custom script to perform specific actions.

When you create an incoming transition, Soffid creates the proper outcoming transition.

Get the selected user, first name, and operation from the previous step:

The Outcoming transition tab displays the next steps where the flow can go from the current step.
When you create a process from a template or from scratch default outcoming transitions are
defined. It is allowed to customize the default setup, add new transitions, or delete transitions.

From: current step.
Incoming transition: name of the transition.
To: the next step, where the flow goes.
Action: allows creating a custom script to perform specific actions.

When you create an outcoming transition, Soffid creates the proper incoming transition.

Get the account list associated with a user to perform some actions:

* https://es.wikipedia.org/wiki/Expression_Language

Example

selector = executionContext.getVariable("userSelector");
user = serviceLocator.getUserService().findUserByUserName(selector);
executionContext.setVariable("testName", user.firstName);
executionContext.setVariable("testOperation", "CHECK");

Outgoing transitions

Example

userName = executionContext.getVariable("userName");
accountList = serviceLocator.getAccountService().findAccountByJsonQuery("name eq \"" + userName + "\" AND 
(type eq \"P\" or type eq \"S\" or type eq \"I\")");
for (account:accountList) {
	//TO-DO
}                                                                    

https://es.wikipedia.org/wiki/Expression_Language


This step is used to divide the workflow into two or more paths that will run in parallel, allowing
multiple activities to run simultaneously.

/====> path 1 =====\

Fork ====                                                  ==> Join

\====> path 2 =====/

This process type does not have task details for the fork step.

The Incoming transitions tab displays the previous steps where the flow comes from. When you
create a process from a template or from scratch default incoming transitions are defined. It is
allowed to customize the default setup, add new transitions, or delete transitions.

From: the previous step, where the flow comes. Allows you to select where the workflow
comes from.
Incoming transition: brief name to identify the transition. That is the name of the action
the form will show to the final user.
To: current step.
Action: allows creating a custom script to perform specific actions.

Fork
Definition

Steps Tabs
Task details

Incoming transitions



When you create an incoming transition, Soffid creates the proper outcoming transition.

Update custom attributes defined on metadata

The Outcoming transition tab displays the next steps where the flow can go from the current step.
When you create a process from a template or from scratch default outcoming transitions are
defined. It is allowed to customize the default setup, add new transitions, or delete transitions.

From: current step.
Outgoing transition: name of the transition. It is a required field, you must comply it to
the workflow run properly.
To: the next step, where the flow goes.
Action: allows creating a custom script to perform specific actions.

When you create an outcoming transition, Soffid creates the proper incoming transition.

Example

userName = executionContext.getVariable("userName");
attributes = serviceLocator.getUserService().findUserAttributes(userName);

newAttributes = new HashMap();
newAttributes.put("country", "FR");

language = attributes.get("language");
if (language == null) {
  language = new LinkedList();
}
language.add("Spanish");
language.add("German");

newAttributes.put ("language", language);

serviceLocator.getUserService().updateUserAttributes(userName, newAttributes);

Outgoing transitions



Scroll through the list of roles and the list of grant hierarchies to execute some actions.

Example

userName = executionContext.getVariable("userName");

roleList = serviceLocator.getApplicationService().findRolesByUserName(userName);
for (role:roleList) {
  //TO-DO
}

user = serviceLocator.getUserService().findUserByUserName(userName);
roleGrantList = serviceLocator.getApplicationService().findRoleGrantHierarchyByUser(user.id);
for (roleGrant:roleGrantList) {
  //TO-DO
}



This step is used to combine two or more parallel paths into one path. 

This process type does not have task details for the fork step.

The Incoming transitions tab displays the previous steps where the flow comes from. When you
create a process from a template or from scratch default incoming transitions are defined. It is
allowed to customize the default setup, add new transitions, or delete transitions.

To join some paths will be mandatory to add the incoming transitions from those forks. 

From: the previous step, where the flow comes. Allows you to select where the workflow
comes from.
Incoming transition: brief name to identify the transition. That is the name of the action
the form will show to the final user.
To: current step.
Action: allows creating a custom script to perform specific actions.

When you create an incoming transition, Soffid creates the proper outcoming transition.

Join
Definition

Steps Tabs
Task details

Incoming transitions



Delete additional attribute:

The Outcoming transition tab displays the next steps where the flow can go from the current step.
When you create a process from a template or from scratch default outcoming transitions are
defined. It is allowed to customize the default setup, add new transitions, or delete transitions.

From: current step.
Incoming transition: name of the transition.
To: the next step, where the flow goes.
Action: allows creating a custom script to perform specific actions.

When you create an outcoming transition, Soffid creates the proper incoming transition.

Example

userName = executionContext.getVariable("userName");
attribute = serviceLocator.getUserService().findDataByUserAndCode(userName, "country");

if (attribute != null) {
  serviceLocator.getAdditionalDataService().delete(attribute);
}

Outgoing transitions

Example

https://bookstack.soffid.com/uploads/images/gallery/2021-06/image-1623748784180.png


Scroll through the list of roles to execute some actions.

userName = executionContext.getVariable("userName");

roleList = serviceLocator.getApplicationService().findRolesByUserName(userName);
for (role:roleList) {
  //TO-DO
}



The end step finalizes the process. It is the last step of the workflow.

This process type does not have task details for the start step.

The Incoming transitions tab displays the previous steps where the flow comes from. When you
create a process from a template or from scratch default incoming transitions are defined. It is
allowed to customize the default setup, add new transitions, or delete transitions.

From: the previous step, where the flow comes. Allows you to select where the workflow
comes from.
Incoming transition: brief name to identify the transition. That is the name of the action
the form will show to the final user.
To: current step.
Action: allows creating a custom script to perform specific actions.

When you create an incoming transition, Soffid creates the proper outcoming transition.

If the user country is Spain, it will perform an action for each role.

End
Description

Steps Tabs
Task details

Incoming transitions

Example

userName = executionContext.getVariable("userName");
user = serviceLocator.getUserService().findUserByUserName(userName);
country = user.getAttributes().get("country");



This step does not have outgoing transitions. It is the last step of the workflow.

if (country != null && country.equals("ES")) {
	roleList = serviceLocator.getApplicationService().findRolesByUserName(userName);
	for (role : roleList) {
      //TO-DO
}

Outgoing transitions


